Human Milk Glycomics and Gut Microbial Genomics in Infant Feces

Shows Correlation between Human Milk Oligosaccharides

and Gut Microbiota: A Proof-of-Concept Study

Maria Lorna A. De Leoz, Karen M. Kalanetra, Nicholas A. Bokulich, John S. Strum,

Mark A. Underwood, J. Bruce German, David A. Mills, and Carlito B. Lebrilla

Supporting Information for Publication

Supplementary Table 1. qPCR Primers and Probes.

Primer/Probe Taxonomy		Assay	Sequence (5' to 3') Concentra		tion Tm (C°) Reference	
Uni334F	universal Bacteria	SYBR Gree	en ACTCCTACGGGAGGCAGCAGT	400 nM	65.5	Hartman et al., 2009
Uni514R	universal Bacteria	SYBR Gree	en ATTACCGCGGCTGCTGGC	400 nM	65.5	Hartman <i>et al.</i> , 2009
Bdes1038F	Bacteroidales	SYBR Gree	en GGTGTCGGCTTAAGTGCCAT	400 nM	61	Hartman <i>et al.</i> , 2009
Bdes1189R	Bacteroidales	SYBR Gree	enCGGAYGTAAGGGCCGTGC	400 nM	61	Hartman <i>et al.</i> , 2009
Bif F	Bifidobacteria	TaqMan	GCGTGCTTAACACATGCAAGTC	300 nM	60	Penders et al., 2005
Bif R	Bifidobacteria	TaqMan	CACCCGTTTCCAGGAGCTATT	300 nM	60	Penders et al., 2005
Bif P	Bifidobacteria	TaqMan	[6-FAM]TCACGCATTACTCACCCGTTCGCC[BHQ1]	150 nM	60	Penders et al., 2005
BiLONF	B. longum group	TaqMan	CAGTTGATCGCATGGTCTT	500 nM	58	Malinen <i>et al.</i> , 2005
BiLONR	B. longum group	TaqMan	TACCCGTCGAAGCCAC	500 nM	58	Malinen <i>et al.</i> , 2005
BifSpP	B. longum group	TaqMan	[6-FAM]TGGGATGGGGTCGCGTCCTATCAG[TAMRA	A] 80 nM	58	Malinen <i>et al.</i> , 2005
BiADOg-1a	B. adolescentis grou	ıp SYBR Gree	enCTCCAGTTGGATGCATGTC	250 nM	55	Matsuki <i>et al,</i> 2004
BiADOg-1b	B. adolescentis grou	ıp SYBR Gree	enTCCAGTTGACCGCATGGT	250 nM	55	Matsuki <i>et al,</i> 2004
BiADO-2	B. adolescentis grou	ıp SYBR Gree	en CGAAGGCTTGCTCCCAGT	250 nM	55	Matsuki <i>et al,</i> 2004
BiBIF-1	B. bifidum	SYBR Gree	enCCACATGATCGCATGTGATTG	250 nM	55	Matsuki <i>et al,</i> 2004
BiBIF-2	B. bifidum	SYBR Gree	en CCGAAGGCTTGCTCCCAAA	250 nM	55	Matsuki <i>et al,</i> 2004
BiBRE-1	B. breve	SYBR Gree	en CCGGATGCTCCATCACAC	250 nM	55	Matsuki <i>et al,</i> 2004
BiBRE-2	B. breve	SYBR Gree	en ACAAAGTGCCTTGCTCCCT	250 nM	55	Matsuki <i>et al,</i> 2004
BiCATg-1	<i>B. catenulatum</i> grou	p SYBR Gree	en CGGATGCTCCGACTCCT	250 nM	55	Matsuki <i>et al,</i> 2004
BiCATg-2	<i>B. catenulatum</i> grou	p SYBR Gree	en CGAAGGCTTGCTCCCGAT	250 nM	55	Matsuki <i>et al,</i> 2004

Supplementary Figure 1. H/D ratios of two isomeric groups of oligosaccharides in the fecal HMO profile of Infant B . H/D ratios were calculated using nano-HLPC chip/TOF MS data. (A) Four isomers of m/z 856 ($[M+H]^+$, z=1, M=855.3220, second bar from the left in each week in Figure 4A). (B) Three isomers of m/z 538 ($[M+2H]^{2+}$, z=2, M=1074.3963, fourth bar from the left in Figure 4A). M=monoisotopic (neutral) mass.

De Leoz et al. Human Milk Glycomics and Gut Microbial Genomics Paper

Supplementary Figure 2. LC/MS extracted ion chromatograms of m/z 538 ([M+2H]²⁺, z=2, M=1074.3963) in the fecal HMO profile of Infant B using nano-HLPC chip/TOF MS. Chromatograms at (A) week 0, (B) week 1, (C) week 2, and (D) week 13. M=monoisotopic (neutral) mass.

Supplementary Figure 3. H/D ratios of four isomeric groups of oligosaccharides in the fecal HMO profile of Infant B. H/D ratios were calculated using nano-HLPC chip/TOF MS data. (A) Five isomers of m/z 611 ($[M+2H]^{2+}$, z=2, M=1220.4542, fifth bar from the left in each week in Figure 4A). (B) Three isomers of m/z 684 ($[M+2H]^{2+}$, z=2, M=1366.5121, sixth bar from the left in Figure 4A). (C) Four isomers of m/z 794 ($[M+2H]^{2+}$, z=2, M=1585.5864, ninth bar in Figure 4A). (D) Five isomers of m/z 867 ($[M+2H]^{2+}$, z=2, M=1731.6443, tenth bar from the left in Figure 4A). M=monoisotopic (neutral) mass.

