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FromMetabolomics to Fluxomics: A Computational Procedure to Translate
Metabolite Profiles into Metabolic Fluxes
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ABSTRACT We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic
fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform
comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with
metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles
were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate
(PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability
of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and
regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase
together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted
by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection
through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological
approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat
metabolic diseases.
INTRODUCTION
Considerable effort has been invested in whole-genome/
proteome screenings to detect genetic loci contributing to
the susceptibility of complex human diseases such as dia-
betes and cancer. As a result, gene/protein changes have
been cataloged and with the help of systems biology
approaches are now transforming medical and clinical prac-
tice (1). Yet, articulating ‘‘omics’’ technologies into quanti-
tative and physiologically meaningful mechanisms remains
a challenging (2–4) but promising frontier to explore in the
attempt to effectively combat chronic diseases such as
diabetes.

The complex nature of a disease often originates from
impairment of several steps in different biochemical path-
ways. For instance, the net effect of an inborn error of meta-
bolism on the organ and organism levels is the alteration of
one or more metabolite fluxes (5). A metabolic flux is
defined as the rate (i.e., molar per unit time) at which metab-
olites are converted or transported between compartments in
a network of biochemical reactions. Ultimately, it is the
concept of metabolic flux that is crucial in the translation
of genotype and environmental factors into a healthy or
disease phenotype.
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In systemic disorders like diabetes, a whole network of
metabolic fluxes is drastically altered. Metabolic remodel-
ing occurs at the level of the genome, transcriptome, and
proteome, including posttranslational modifications (2)
but, in the end, enzymatic activities and the resulting metab-
olite profiles will reflect all those changes. Thus, in princi-
ple, a metabolite profile could be translated into the set of
fluxes that gave rise to the metabolome.

The set of metabolic fluxes, or fluxome, represents a
dynamic picture of the phenotype, inasmuch as it captures
the metabolome in its functional interactions with the envi-
ronment and the genome (4,6). As such, the fluxome inte-
grates information on several cellular processes, and hence
it is a unique phenotypic signature of cells (2). A main
advantage of fluxomics over genomics and proteomics is
that it is based on information from metabolites, which
are far fewer than genes or proteins (7). For instance, in
the mouse there are ~600 detectable low-molecular-weight
intermediates (8), whereas there are ~10,000 proteins and
~22,000 protein-encoding genes (4).

For systemic metabolic remodeling, as occurs in diabetes
or cancer, metabolic fluxes become crucial for quantitative
interpretation (5). For example, the cardiac redox status
plays a relevant role in diabetic cardiomyopathy (9).
The myocardial redox balance can change in response to
hyperglycemia, a prevalent condition in diabetic patients,
due to redirection of glucose catabolic fluxes through
the NADPH-consuming (polyol) or NADPH-generating
(pentose-phosphate (PP)) pathways, respectively. To assess
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the extent of flux through different pathways occurring
simultaneously, a quantitative systems biology approach is
needed.

Herein, we introduce a believed-novel metabolomic-
fluxomic procedure that enables the translation of high
throughput metabolite profiles (metabolome) into the flux-
ome, from which the profiles emerged. Importantly, this
methodology also allows one to determine the structure of
control and regulation of the fluxome. Our approach consists
of the combination of an analytical platform—comprising
several integrated quantitative methodologies—with a
detailed computational kinetic model that accounts for reg-
ulatory interactions. This analytical procedure, spanning
from metabolome to fluxome, is applicable to any metabolic
system that can be described by kinetic modeling. The
advantage of our approach over existing methodologies
(10) is that it incorporates regulatory information (e.g.,
effectors, feedbacks) crucial for understanding dynamic sys-
tems. Heart function is an ideal prototypic system to test the
usefulness of the approach proposed herein. Because the
heart is constantly changing in response to energy demand,
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the choice of kinetic modeling is justified because it can ac-
count for time-dependent behavior. Applying our procedure
and combining metabolic flux estimation with cardiac work
measurement will lend insight into mechanisms underlying
contractile impairment.
MATERIALS AND METHODS

Computational model description

Kinetic modeling of glycolytic, glycogenolytic, polyol,
and PP pathways

The computational model consists of a detailed kinetic scheme of glucose

catabolism comprising glycolysis, glycogenolysis, PP, and polyol (marked

in red) pathways (Fig. 1 and see Section S1 in the Supporting Material). De-

picted also are the exchanges with the extracellular medium including input

(glucose, O2) and output (lactate, fructose, xylitol) fluxes (light-blue

arrows).

The model rate equations account for the effect of known regulatory

interactions and effectors, e.g., ATP for glucose 6 phosphate dehydrogenase

(G6PDH), AMP for phosphofructokinase (PFK), or GDP for pyruvate

kinase (PK). In addition to the metabolite concentrations the rate of
e 

Xylulose

Xylitol

Hexose 6P

G3P

PE

Tkt

drial 
n

XyDH

FIGURE 1 Main glucose degradation pathways

in the heart. The glycolytic, glycogenolytic,

pentose phosphate (PP) and polyol pathways taken

into account by the computational kinetic model

are displayed, along with extracellular exchanges

comprising input (glucose, O2) and output (lactate,

fructose, xylitol) fluxes (light-blue arrows). (Red)

Intermediates of the polyol pathway. Metabolites:

Glc, glucose; Hexose 6P, accounts for Glucose

6-phosphate plus Fructose 6-phosphate; G3P,

glyceraldehyde 3-phosphate; 1,3-BPG, 1,3-biphos-

phoglycerate; 3PG, 3-phophoglycerate; PEP,

phosphoenolpyruvate; Pyr, pyruvate; Lac, lactate;

Glc1P, glucose 1-phosphate; (Maltose)n, maltooli-

gosaccharides (maltose, malto-triose, -tetraose,

-hexaose, etc.); 6PGluc, 6-phosphogluconate;

Ru5P, ribulose 5-phosphate; R5P, ribose 5-phos-

phate; X5P, xylulose 5-phosphate; E4P, erythrose

4-phosphate; S7P, sedoheptulose 7-phosphate.

Enzymes: ALR, aldose reductase; SoDH, sorbitol

dehydrogenase; HK, hexokinase; GP, glycogen

phosphorylase; PGM, phosphoglucomutase; HK,

hexokinase; PFK, phosphofructokinase 1; ALD,

aldolase; GAPDH, glyceraldehyde 3-phosphate

dehydrogenase; PGK, phosphoglycerate kinase;

ENOL, enolase; PK, pyruvate kinase; LDH,

lactate dehydrogenase; G6PDH, glucose 6-phos-

phate dehydrogenase; 6PGDH, 6-phosphogluco-

nate dehydrogenase; R5PI, Ribose 5-phosphate

isomerase; Transket, transketolase; RuPE, Ribu-

lose-phosphate 3-epimerase; Tkt, transketolase;

TAL, transaldolase. To see this figure in color, go

online.
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pyruvate transport into mitochondria was provided as input. The rate at

which pyruvate is consumed by mitochondria was derived from the rate

of oxygen consumption reported for ex vivo heart preparations (11),

analyzed under similar substrate conditions without external workload as

in Langendorff-perfused hearts. Two moles of O2 will be reduced to H2O

in the respiratory chain per mol of pyruvate consumed by mitochondria.

Next, we describe each pathway accounted for by the model, and in a

more detailed manner all rate equations are included in the Supporting

Material.

Glycolysis

The model of glycolysis was based on Lambeth and Kushmerick (12), who

describe the carbohydrate degradation pathway in mammalian skeletal

muscle (see Section S2 in the Supporting Material). This model starts

from glucose-6-phosphate and takes into account the steps down to lactate

formation, excluding hexokinase (HK). The rate expressions and kinetic

parameters of HK are from Lueck and Fromm (13) (see Eq. S2). We

have introduced an expression to model glucose transport based on a Fick’s

law of diffusion, thus dependent on the concentration gradient across the

plasma membrane (Eq. 1).

Important regulatory steps are described in the model, such as the rate

expression of the following: 1) phosphofructokinase, which includes its

inhibition by AMP and ATP, its dependence on substrates ATP and fructose

6P, and products ADP and fructose 1,6-bisphosphate (see Eq. S3); and 2)

glyceraldehyde 3-phosphate dehydrogenase, which obeys a reversible

reaction accounting for hyperbolic kinetic dependence on glyceraldehyde

3-phosphate and biphosphoglycerate, and negative cooperativity by both

NAD and NADH (see Eq. S5) (14).

Glycogenolysis

The glycogen degradation pathway comprises debranching enzymes,

phosphorylase a and b, and phosphoglucomutase enzymes (see Eqs. S10–

S12). The enzymatic rate expressions were based on the skeletal muscle

model (12).

PP pathway

The oxidative and nonoxidative branches of the PP pathway were taken into

account by the model (see Eqs. S14–S20 in Section S2.3 in the Supporting

Material). The rate expressions for each of the enzymatic steps involved in

the PP pathway were based on Nishino et al. (15). These authors parame-

terized their model according to data from McIntyre et al. (16). G6PDH,

the first enzyme of the pathway, was parameterized according to Buckwitz

et al. (17) and includes ATP inhibition (see Eq. S14).

Polyols

Activation of the polyol pathway may have adverse consequences for heart

function (18). Hyperglycemia (19) and sustained b-adrenergic stimulation

are both known to stimulate polyols (20). The sorbitol route included fruc-

tose synthesis by sorbitol dehydrogenase, in addition to aldose reductase

(see Section S2.4 in the Supporting Material). The rate expression and

kinetic parameters of aldose reductase were derived from the work of

Grimshaw et al. (21) with kinetic data from Kubiseski et al. (22) and Halder

and Crabbe (23) (see Eq. S21). Sorbitol and xylitol dehydrogenases were

modeled following the kinetic characterization and parameters determined

by Karacao�glan and Ozer (24) and O’Brien et al. (25) (see Eqs. S22

and S23).

ATPase, nonglycolytic NADH consumption, NADPH
consumption, and polyol transport

To achieve steady-state behavior, the model formulation also includes rate

expressions accounting for the consumption of adenine and pyridine nucle-

otides and polyol excretion. We assumed that the kinetic behavior of those

processes can be represented by hyperbolic functions (see Eqs. S24–S28).
The equation representing ATP hydrolysis was considered irreversible,

unlike those corresponding to NAD(P)H consumption, which were modeled

as reversible reactions.
Integrated analytical platform

Kinetic modeling of metabolic networks, and their
continuation and dynamic analyses

Other than steady-state fluxes (26–29), a realistic representation of transient

behavior requires detailed kinetic modeling including mechanistic regulato-

ry information such as flux regulation, e.g., by substrate and product inhi-

bition/activation. Kinetic models can also accommodate the nonlinear

behavior imparted by feedback and feedforward regulatory mechanisms.

Continuation analyses of nonlinear kinetic models allow the exploration

of their qualitative as well as quantitative behavior (30–32).

Computer model simulations as a function of time or analyzed at the

steady state were carried out with MATCONT (sourceforge.net/projects/

matcont), a package designed for continuation analysis implemented in

the software MATLAB (The MathWorks, Natick, MA) (33,34). The kinetic

model of glucose catabolism is represented by a system of ordinary differ-

ential equations (ODEs) (see Section S1 in the Supporting Material), which

was computed as a function of time until a steady state is reached, i.e., when

the state variable derivatives are <1 � 10�10. MATLAB’s built-in solver,

ODE15s, designed for stiff equations, was used as integrator. This ODE

solver adjusts the integration step size during the computation.

Linear optimization of Vmax in the kinetic model

To quantify metabolic fluxes from metabolite profiles using the kinetic

model, we assume the validity of the association/dissociation affinity con-

stants determined in vitro for each of the enzymatic steps. Another assump-

tion is that the metabolite concentrations correspond to a steady state, which

is experimentally justified by whole heart analysis after 30 min perfusion

under specified conditions (see Preparation and Perfusion of Mouse

Hearts). Consequently, the Vmax of each enzyme is the only unknown

kinetic parameter subjected to optimization. Metabolic enzymes may

change their amounts after transcriptional-translational regulation, or after

posttranslational modifications, which are reflected by their Vmax values.

We used linear optimization (28,35) because the number of Vmax un-

knowns (one per step in the network) is larger than the number of metabo-

lites available from metabolomics, implying that the system is

underdetermined. Thus, instead of calculating a unique solution for the sys-

tem, we obtain a volume of possible solutions. This entails that we are able

to calculate a range of fluxes compatible with the given initial input, i.e.,

metabolites concentration profile and exchange fluxes with the extracellular

medium. This optimization procedure was inspired by the flux balance anal-

ysis developed by Savinell and Palsson (29). For optimization we proceed

to represent the rate of each step in the metabolic network by explicit rate

expressions that are, in all cases, a linear function of Vmax. The latter

assumption is required for applying linear optimization methods.

The method is based on the general equation

dx=dt ¼ S � vþ b; (1)

with dx/dt representing the vector of derivatives of the state variables (inter-

mediary metabolite concentrations); S is the stoichiometric matrix of size n

� m, with n and m being the number of metabolites and metabolic fluxes,

respectively; and b is the vector of transport and demand processes, e.g.,

biosynthesis. Finally, v stands for the vector rates expressed as the rate equa-

tion in the model with known kinetic parameters except for Vmax, which is

subjected to optimization. In the network analyzed herein (Fig. 1), n ¼ 19

and m ¼ 25; thus, the dimension of the solution space is m�n ¼ 6.

Optimization of the linear algebraic system is performed with the Sim-

plex algorithm (implemented in MATLAB). Maximization of ATP synthe-

sis fluxes or minimization of redox consumption were used as objective
Biophysical Journal 108(1) 163–172



TABLE 1 Comparison of experimental and model-simulated

metabolite concentrations

Metabolite Experimentala Model

Glucose (external) 11

Glucose (internal) 1.52 1.47

Maltosides 5.6 5 0.4 5.6

G1P 0.163 5 0.004 0.15

F6P þ G6P 4.06 5 0.27 4.20

F1,6bP 0.015 5 0.005 0.0147

G3P <0.01 0.009

1,3 DPG <0.01 6.6 � 10�4

3-PG 0.57 5 0.04 0.56

PEP <0.01 1.99 � 10�3

Pyruvate <0.01 8.5 � 10�3

Ru5P þ X5P 2.58 5 0.68 2.54

R5P 0.29 5 0.07 0.39

Sorbitol 0.67 5 0.32 0.65

Fructose 1.7 5 1.2 1.72

Xylitol 0.65 5 0.18 0.66

aExperimental and model-simulated concentrations are expressed in

mmol/L and experimental values are displayed as mean 5 SE (n ¼ 6).
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functions to constrain the optimization procedure. In Table S24, we quan-

tify the impact of different objective functions on Vmax (Supporting

Material).

Analytical and numerical methods utilized

1. The function ‘‘linprog’’ from MATLAB (The MathWorks) was utilized

with the Simplex algorithm for optimization of Vmax values.

2. Within the volume of possible solutions, a solution was chosen in

order to corroborate that the system is able to reproduce the original

metabolite profile. The solution was calculated with the ‘‘linsolve’’ func-

tion from MATLAB using six of the maximal values of Vmax down-

stream in the metabolic network, e.g., VXDH
max;f , V

SoDH
max;f , V

LDH
max;ðf ÞðrÞ, and

ETK2, because they are relatively less interdependent as compared to

upstream ones.

After exploring several combinations of the optimized Vmax values, we

chose a solution that fulfilled two conditions: 1) Vmax > 0 for all enzyme

activities in the network, and 2) a solution that belongs to the hypervolume

of dimension 6 (see Section S2.2 in the Supporting Material).

With the solution at hand, i.e., the set of optimized Vmax values, we ran

computer simulations to reproduce the initial metabolite profile; once the

latter was simulated by the model at steady state, we were also able to

obtain the rate or flux through each individual step of the metabolic

network. We consider that the set of metabolic fluxes determined corre-

spond to one of the vertices of the volume of solutions corresponding to

the fluxome, as illustrated for a simpler system with a two-dimensional

solution space (see Fig. S1). To demonstrate the potential of the method,

linear algebra functions from the software MATLAB were utilized for

matrix calculations to quantitate the main rate-controlling and regulatory

steps of the metabolic network, as described next.

Quantifying control and regulatory steps in the metabolic
network

Metabolic control analysis quantifies the control in a metabolic pathway

through two types of coefficient: the flux (or metabolite concentration) con-

trol coefficient and the elasticity coefficient (4,36,37). In general terms,

‘‘control’’ is used to describe quantitatively the effect on flux produced by

a change in enzyme activity, whereas ‘‘regulation’’ denotes the modulation

of enzyme activity by effectors. In a quantitative sense, regulation refers to

how the flux of a pathway is modified through the effect on the rate of an

individual step by cellular or external factors, which may include interme-

diarymetabolite, ion concentrations, or pH, and is quantified by the response

coefficient. This coefficient measures the fractional change in flux, e.g.,

glycolysis, in response to a fractional change in an external or internal param-

eter A (e.g., an effector such as fatty acids) other than enzyme activity (37).

The method of Cortassa et al. (36) and Reder (38) was used to analyze

control and regulation of the biochemical network shown in Fig. 1. In addi-

tion to the flux and metabolite control coefficients, this method represents a

way to analyze, through the response coefficients the sensitivity of the

metabolic system to perturbations triggered by an internal change in the

system or to an environmental perturbation. The method has been exten-

sively described and validated in Cortassa et al. (36).

The analysis uses the stoichiometric matrix, which defines the structural

relationships between the processes and the intermediates participating in

the metabolic network, and the elasticity matrix, defined by the dependence

of each process in the network upon intermediates and effectors (e.g.,

metabolites, ions) included in the model (see Section S3 in the Supporting

Material). The elasticity matrix is obtained from the derivatives of the rate

expressions of individual processes with respect to each intermediate in the

metabolic network.

The following matrix relationships were used in the computation of flux

and metabolite concentration control coefficients (36),

C ¼ Idr � Dxv LðSrDxv LÞ�1
Sr; (2)
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G ¼ � L ðSr Dxv LÞ�1
Sr; (3)
withC andG referring to the matrices of flux- and metabolite-concentration

control coefficients, respectively; Idr is the identity matrix of dimension r,

the number of processes in the network under study; Dxv is the elasticity

matrix; Sr is the reduced stoichiometric matrix; and L is the link matrix

that relates the reduced- to the full-stoichiometric matrix of the system.

The stoichiometric matrix Sr is the same one used in the optimization

procedure described above, after eliminating redundant rows (see Section

S3 in the Supporting Material).
Translating metabolite profiles into metabolic
fluxes

To quantitate metabolic fluxes through the glucose degradation pathways

(Fig. 1) underpinning the metabolite profile shown Table 1, we followed

the flow diagram depicted in Fig. 2.

Conversion of metabolite profiles from relative to quantitative
changes

Metabolite profiling performed under controlled conditions informs relative

changes in metabolites (see Preparation and Perfusion of Mouse Hearts, and

see Section S6 in the Supporting Material). To calculate the fluxes through

the network, effective concentrations (in molar units) of metabolites are

used. Metabolite concentrations are inputs of the rate expressions from

the kinetic model, needed to calculate metabolic fluxes.

The same heart samples that were utilized to perform metabolite

profiling, were analyzed by standard enzymatic assay to determine the

actual concentration of representative metabolites (glucose, glycerol, gluta-

mate, and lactate) present in the profiles. These metabolite concentration

values were used to calibrate the area of the mass spectrometric (MS) peaks

to determine the concentrations of all other metabolites present in the MS

profiles as follows:

Massmetabolite ¼ 1

Mean Areastd=Massstd
� Areametabolite: (4)

Mean Areastd was determined from the area under the peak of the corre-

sponding molecular ion in the mass spectrum. The Massstd was calculated



Metabolomics: relative changes in metabolite levels

Metabolite concentrations

Model build up and optimization of Vmax values

Simulation of the metabolite concentration profile

Fluxome determination

Calculation of fluxome control and regulation

FIGURE 2 Work-flow diagram leading from metabolite profiling to the

fluxome, and the analysis of its control and regulatory properties.
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from the number of moles determined enzymatically in the same samples

that were analyzed by MS multiplied by the mass of the molecular ion.

The moles of metabolite in the sample were calculated according to

Metabolite ðmolÞ ¼ Massmetabolite=MW molecular ion; (5)

where MW stands for molecular weight.

In this procedure, we assume that the area under the peak is proportional

to the mass of the molecular ion impacting the MS detector. The sample

analyzed by MS corresponded to 20 mg wet weight heart tissue. It was

considered that 1 g of wet weight tissue corresponds to 0.42 mL of intracel-

lular water (39).

The metabolite concentrations calculated were used as input data for the

model to optimize Vmax values as described before. After optimization, the

model was utilized to simulate the metabolite concentration profile (Table

1). Another input of our procedure is given by the fluxes of exchange with

the extracellular medium, i.e., rates of oxygen and glucose consumption,

and lactate excretion. These fluxes provide a reference point to estimate

the intracellular fluxes. Specifically for this work, we used rates of O2

consumption reported in How et al. (40).
FIGURE 3 Metabolome of glucose utilization pathways obtained from

intact mouse heart perfused with normal glucose. Represented are the

relative metabolite levels detected in hearts perfused with 11 mM glucose

under the conditions described in Materials and Methods (n ¼ 6 hearts).

Metabolites and their corresponding pathways are indicated on the y axis.

The relative scale intensity in the x axis was determined rescaling each

biochemical (n ¼ 6) to set the median equal to 1.0 (Metabolon). (Whiskers

plot) Median and the mean (line and dotwithin the box, respectively), upper

and lower 75 and 25% percentiles of the box. (Dots) Outliers beyond the

whiskers of the plots. To see this figure in color, go online.
Preparation and perfusion of mouse hearts

Male wild-type C57BLKS/J-leprþ/leprþ (þ/þ) mice, 8–10 weeks of age,

obtained from Jackson Laboratory (Bar Harbor, ME), were euthanized by

pentobarbital injection following the requirements of the Institutional

Animal Care/Use Committee at Johns Hopkins University, adherent to

National Institutes of Health guidelines. After rapid excision, hearts were

retrogradely perfused (employing the Langendorff technique) with Krebs-

Henseleit buffer, pH 7.4, containing 1.2 mM Pi, 0.5 mM free Mg2þ,
1.07 mM free Ca2þ, and 11 mM glucose as described in Tocchetti et al.

(9). Hearts were perfused during ~30 min while paced with a pacing

electrode (Radnoti, Monrovia, CA) at 600 bpm (10 Hz, 4 ms duration,

4 V) using a stimulator (Grass Instruments, Quincy, MA).

Vascular tone was assessed through coronary perfusion pressure (CPP)

and LV functionwasmonitoredwith awater-filled, customized latex balloon

inserted in the left ventricle and connected to a P23XL pressure transducer

with interface cable (Harvard Apparatus Instruments, Holliston, MA) and

coupled to a model No. DA100 system (BIOPAC, Santa Barbara, CA) for

continuous data recording and offline analysis. LV end-diastolic pressure

was set at 5–10 mmHg by adjusting the balloon volume with a Gilmont

micrometer syringe (Cole-Parmer, Vernon Hills, IL). The LV-developed

(systolic-diastolic) pressure, CPP (both in mmHg), and maximal rates of

contraction (dP/dtmax) and relaxation (dP/dtmin) (both in mmHg/s) were

determined. After perfusion, hearts were snap-frozen in liquid nitrogen

and sent to Metabolon (Research Triangle Park, NC) for nontargeted metab-

olite profiling (see Section S4 in the Supporting Material).
RESULTS

Metabolomics analysis of intact mouse hearts

As a first test of our procedure for translating metabolomics
into fluxomics, we performed metabolite profiling in intact
Langendorff-perfused hearts. Fig. 3 shows the metabolite
profiles from the glucose degradation pathways (Fig. 1) as
determined in mouse hearts superfused with normal
11 mM glucose. Under these conditions, heart functional
variables were (mean5 SE, n¼ 6–11 hearts): LV-developed
pressure (mmHg)¼ 545 6.9; dP/dtmax (mmHg s�1)¼ 1545
5 166; dP/dtmin (mmHg s�1) ¼ �1442 5 145; CPP
(mmHg) ¼ 85.8 5 0.97.
Translating metabolite concentrations into
metabolic fluxes

The metabolite profile (relative metabolite changes) shown
in Fig. 3 constitutes the initial departure point leading
to the estimation of metabolite concentration. After opti-
mizing Vmax, we verified that a solution from the solution
space can reproduce the initial metabolite profile by numer-
ical simulation.

Table 1 shows the metabolites concentrations determined
experimentally compared with model simulation. Con-
sidering experimental error, the computational model accu-
rately reproduced metabolite concentrations from the profile
observed experimentally.

Fig. 4 depicts a set of fluxes corresponding to the glucose
catabolic fluxome (in mM s�1) exhibited by mouse hearts
Biophysical Journal 108(1) 163–172



FIGURE 4 The glucose catabolic fluxome in the

mouse heart. Depicted are the fluxes (shaded

background) next to their respective steps in the

metabolic network of glucose utilization (Fig. 1)

and expressed in mM s�1 (equivalent to nmol s�1

mL�1 intracellular water). The fluxes correspond

to those leading to the metabolite concentrations

that reproduced the ones obtained experimentally

as shown in Table 1 (see also Materials and

Methods). To see this figure in color, go online.
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perfused with glucose only. Displayed is the flux distribu-
tion through glycolysis, immediately upstream and down-
stream of the branch toward the polyol (sorbitol),
glycogenolytic, and PP routes. The mouse heart was able
to sustain a glycolytic flux as high as 41.8 mM s�1 upstream
glyceraldehyde 3-phosphate (G3P) (Fig. 4). The PP pathway
sustained a flux that represents 32% of the glycolytic flux
(13.6 mM s�1), and is approximately three orders-of-magni-
tude higher than the flux through the polyol pathway
(Fig. 4). The mouse heart is able to utilize internal stores
of glycogen, revealed by glycogenolysis flux values as
high as 36.5 mM s�1 under these conditions.

Together, these data reveal that glucose is actively utilized
fromboth the perfusion solution and internal glycogen stores.
Although glucose from glycogen degradation is mainly
broken down via glycolysis, other branching pathways such
as PP and polyols were active, especially the former.
Control and regulation of the glucose fluxome

Metabolic control analysis was applied to identify and quan-
tify the control of the flux and metabolite concentrations
from the glucose fluxome determined (Fig. 4).

The main rate-controlling steps of the glycolytic flux
were (Fig. 5 A) as follows: PFKz glycogenolysis (flux con-
trol coefficient, C z 0.65) > ATP demand with negative
control (C ~ �0.4) > Glc uptake (C ~ 0.12) > G6PDH
with negative control (C ¼ �0.05) > HK (C ¼ 0.03).
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A positive control, e.g., C¼ 0.65 for PFK, means that this
enzyme controls 65% of the flux through glycolysis, and
that an increase in the activity of PFK will increase the
glycolytic flux. On the contrary, a negative control, e.g.,
C ¼ �0.05 for G6PDH, implies that this enzyme controls
5% of the flux, and an increase in its activity will actually
decrease the flux through glycolysis.

The control profile of the PP pathway exhibited the same
major rate-controlling steps as glycolysis but with much
higher flux control coefficients (Fig. 5 B): Glycogenolysis
C ¼ 2.2 > ATP demand C ¼ �1.1 (negative) > G6PDH
C ¼ 0.8 > glucose uptake C ¼ 0.4 > HK C ~ 0.1.

The negative control of PFK on PP flux means that any
increase in the flux through glycolysis will have the opposite
effect on the PP flux.

The control profile of the polyol pathway leading to
sorbitol and fructose (Fig. 5 C) displayed a high positive
control by the following steps: ATP demand (C ~ 14) >
glucose uptake (C ~ 2) > aldose reductase (C ¼ 1).

A high negative control was exerted by PFK (C¼�13)>
glycogenolysis, HK, G6PDH (C ¼ �1).

Overall, the control of the glucose catabolic fluxome is
highly distributed with glycogenolysis, PFK, and ATP de-
mand as the major rate-controlling steps. The structure of
control reveals that an overall increase in the glycolytic
flux will decrease the flux redirection through PP and poly-
ols, as revealed by the negative flux control exerted via PFK
on both pathways.
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FIGURE 5 Control of the glucose fluxome in the heart. The flux control

coefficients of the most rate-controlling steps of glucose catabolism are

displayed. The bar length indicates the x-axis magnitude of the flux control

coefficient (CC) of glycolysis (A), PP (B), and polyol (C) pathways. The

corresponding enzymatic steps are indicated at the left of each bar plot.

The flux CC can be either positive or negative, and in all cases it was

verified that the sum of the CC ¼ 1.0, in compliance with the summation

theorem.

From Metabolomics to Fluxomics 169
DISCUSSION

The main contribution of this work is to describe a
believed-novel procedure to translate metabolite profiles
(metabolome) into the fluxome, from which the metabolome
originated. Tested with metabolite profiles obtained from
Langendorff-perfused mouse hearts, we were able to quan-
titatively reproduce the metabolite concentration profile
(Table 1) using a set of optimized Vmax values corresponding
to a particular solution from the solution space.

The resulting parameterized computational model was
utilized to calculate the structure of control of the glucose
fluxome comprising all catabolic routes involved in glucose
degradation. The significant control exerted by the ATP
demand is expected from an energy demand-led organ like
the heart. Preceding metabolic control analysis work in the
heart showed that glucose transport and hexokinase were
the most rate-controlling steps of the glycolytic flux (41).
The main differences between our approach and Kashiwaya
et al. (41) are that, in their work, the allosteric property of
PFK was not taken into account, nor was the influence of
ATP and ADP on various enzymatic steps. Including these
regulatory interactions turned out to be important because
PFK exerts a high control on glycolysis and exhibits high
elasticity with respect to ATP and ADP levels.

Thus, the response coefficients of PFK, with respect to
adenine nucleotides, are high and cannot be ignored. That
the ATP demand exerts a negative control on the glycolytic
flux, appears counterintuitive because one would expect that
an increase in energy demand should be followed by an
increase, not a decrease, in glycolysis. However, the nega-
tive control of glycolysis by ATP demand can be explained
according to control by diffuse loops (4,36). In fact, because
PFK is a main rate-controlling step of the glycolytic flux,
and that this enzyme activity depends on ATP thereby
responding positively to its increase, an increase in ATP
demand will decrease ATP availability for PFK activity,
thus yielding lower flux through glycolysis.

Alternative strategies for the quantitative analysis of
metabolomics data have been proposed by Cakmak et al.
(42) and Yizhak et al. (43). Our approach differs from theirs
in the following ways: 1) we use mechanistic rate expres-
sions that account for experimentally demonstrated kinetics
and regulatory interactions; 2) our analytical platform com-
bines existing analytical methods in an integrated manner
for qualitative and quantitative analyses both under steady
and time-dependent conditions; and 3) we are able to trans-
late large metabolite datasets into a functional fluxome that
by accounting for regulatory interactions enables the
computation of the structure of control and regulation of
the biochemical network from which the metabolite profiles
originated.
Comparison with experimental data

Quantitative validation of our calculations comes from the
published results of Buchanan et al. (44), who measured
the rate of glycolysis and glucose oxidation in working heart
preparations from wild-type and diabetic (db/db) mice
(Table 2). The equivalent flux measurements in this work
(unloaded Langendorff-perfused heart) corresponded to
Biophysical Journal 108(1) 163–172



TABLE 2 Flux values from the literature compared with

fluxome calculations

Tissue source

Flux

reported

mM s�1

Flux

estimation

mM s�1 Reference

Glycolysis mouse working heart 37.5 41.8 (45)

Glc uptake rat working heart 76.3 9.8 (41)

Glyn utilization rat working heart 7.67 36.5 (41)

Glycolysis mouse working heart 54.17 41.8 (44)

Glc oxidation mouse working heart 5.42 7.79 (44)

G6PDH mouse liver 45.2 13.6 (46)

6PGDH mouse liver 107.2 13.6 (46)

Tkl mouse liver 49.6 4.5 (46)

TAL mouse liver 45.6 4.5 (46,47)

XyDH mouse liver 43.8 0.0031 (47)

SoDH mouse liver 200.9 0.0036 (47)

G6PDH mouse liver 7.55 13.6 (47)

6PGDH mouse liver 6.04 13.6 (47)

Abbreviations are as in Fig. 1. Glyn utilization, glycogen utilization;

XyDH, xylitol dehydrogenase.
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values extrapolated to the y axis (no workload) in Buchanan
et al. (44). These authors found ~1:10 between the glucose
oxidized (~600–700 nmol min�1 gram dry weight
(gdw)�1) versus glucose catabolized through glycolysis
(~6–7 mmol min�1 gdw�1). This result agrees very well
with the ratio obtained in our fluxome calculation (Fig. 4).

Considering ~2 mL of intracellular water gdw�1 (39), our
calculated pyruvate flux [PEP/Pyr] value of 88.1 mM s�1

corresponds to 5.3 mmol glucose min�1 gdw�1, similar to
the 6–7 mmol min�1 gdw�1 measured directly in Buchanan
et al. (44). Because different authors report fluxes in various
units, we have translated all values to mM s�1 for direct
comparison with our results (Table 2). Kashiwaya et al.
(41) reported values in the same order of magnitude as those
estimated herein, i.e., 76.3 mM s�1 (Table 2, rows 2 and 3).
The quantitative discrepancy may be attributed to the differ-
ence in species (mouse versus rat) and physiological condi-
tions (Langendorff versus working heart). However, the
measurement of glycolytic flux in mouse working heart
(also strain C57BL/6) by Dunn et al. (45) rendered a value
of 37.5 mM s�1, which closely agrees with our flux estima-
tion. Likewise, for mouse liver and the same enzymes
(G6PDH, P6GDH), different authors (46,47) reported dis-
similar fluxes, but one of them was close to our estimated
fluxes (Table 2).

Because the volume of possible solutions depends on the
choice of objective function to optimize Vmax, further
validation of our procedure will need an independent exper-
imental approach to quantify metabolic fluxes. Table S24
shows Vmax values for a number of reactions to illustrate
how the solution space can change as a function of the opti-
mization criterion. In each case, the values shown in Table
S24 correspond to the vertices of the solutions volume
defined by the sets of maximal Vmax values compatible
with the objective function chosen. Although the maximal
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Vmax of some enzymes varies very little with the change
in objective function, e.g., xylitol dehydrogenase, others
are very sensitive, e.g., glucose transport. Another approach,
by Schuetz et al. (48), performed a thorough evaluation of
different objective functions (linear and nonlinear ones)
with the aim of unraveling the optimization criterion that
rules the metabolic network of, e.g., Escherichia coli
growing in batch or chemostat culture (48), according to
the goodness of the flux prediction.
Limitations of this study

Sources of error associated with the flux estimation using
the procedure described herein include variability in the
experimental determination of metabolite concentrations
or reference fluxes (e.g., respiration, lactate secretion). In
the case of metabolites, the results from the matrix
composed by the derivatives of rate expressions with respect
to Vmax, denoted DrV, will be affected (see Eq. S29).
Although controls of recovery with four internal standards
were run during metabolite profiling, quantitation of
metabolite concentrations from metabolomics data may be
subjected to bias due to metabolites extraction and recovery
errors. Regarding reference fluxes, vector b in Eq. 1 will be
influenced. A description of the maximal error associated
with the Vmax estimation based on Savinell and Palsson
(29) is included in Section S3 in the Supporting Material.

When applied to cell populations, metabolomics assumes
an average cell that ignores cellular heterogeneity. In this
sense the metabolite profile represents an average concen-
tration throughout the heart, and only exchanges between
the organ and the perfusion buffer are considered. Thus,
cellular heterogeneity (e.g., cardiomyocytes, fibroblasts)
and compartmentalization are not taken into account.

At this stage, our procedure generates a volume of
possible solutions because the number of unknowns
(Vmax) (m) is larger than the individual metabolite differen-
tial equations (n). Consequently, a unique solution cannot be
determined. A possible way to restrict the solution space
would be through the use of uniform sampling Monte Carlo
methods such as those described in Price et al. (49).
CONCLUSIONS

We describe a believed-novel integrated procedure for trans-
lating metabolomics into fluxomics as applied to a highly
dynamic organ such as the heart. This major step forward
has relevant implications for complex metabolic disorders.
Insights gained from applying control analysis to the flux-
ome indicate that glucose oxidation redirection toward
pathways that may restore (e.g., pentose phosphate) or
impair (e.g., polyol) cardiac redox balance, appear to be
crucial for improving type-2 diabetic heart function under
stressful conditions (9). Our methodological approach may
also help in designing therapeutic strategies targeted to
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prevent cardiac dysfunction and, eventually, heart failure in
diabetic patients.
SUPPORTING MATERIAL

Supporting Materials and Methods, one figure, twenty-five tables, and
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Section S1. State variables and ordinary differential equations 

Symbol Name Ordinary differential equation 

Glci Intracellular glucose Glc
T HK ALDRV V V   

H6P Hexose 6 phosphate 
6 2HK PGLM PFK G PD TAL TKV V V V V V      

FBP Fructose 1,6 bisphosphate 
PFK ALDV V  

GAP 
 

Glyceraldehyde 3 
phosphare 1 2ALD GAPD TK TAL TKV V V V V     

BPG 1,3 bisphopho-glycerate 
GAPD PGKV V  

3PG 3 phosphoglycerate 
PGK EnolV V  

PEP Phosphoenol- pyruvate 
Enol PKV V  

Pyr Pyruvate 
T

Pyr
PK LDHV V V   

Sor Sorbitol 
ALDR SoDHV V  

Fru Fructose 
T

Fru
SoDHV V  

6PG 6 phosphogluconate 
6 6G PD PGOV V  

Ru5P Ribulose 5 phosphate 
6 5 5PGO R PI Ru PEV V V   

R5P Ribose 5 phosphate 
5 1R PI TKV V  
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X5P Xilulose 5 phosphate 
5 1 2Ru PE TK TK XyDHV V V V    

S7P Sedoheptulose 7 
phosphate 1TK TALV V  

E4P Erythrose 4 phosphate 
2TAL TKV V  

XyOH 
 

Xylitol 
T

XyOH
XyDHV V  

ATPi 
a Cytoplasmic ATP 

HK PFK PGK PK ATPaseV V V V V     

NADH a  
GAPD LDH SoDH XyDH NADHoV V V V V     

NADPH a  
6 6G PD GLO ALDR NADPHoV V V V    

Mal Sum of maltose with 2, 3, 
4, 5 and 6 glc units) _Gno is PGa PGbV V V   

G1P Glucose 1 phosphate 
PGa PGb PGMLV V V   

a Two versions of the model were formulated: a full version with 22 state variables (n=22) that has 28 rates (m=28), and a 

reduced version (for simplicity) that did not take into account ATPi, NADH and NADPH as state variables, thus did not 
consider VATPase, VNADHo or VNADPHo. The reduced version of the model that accounted for ATPi, NADH and NADPH as 
parameters has n=19 and m=25. Both versions rendered similar results (i.e. for all processes that are common in both models) 
for the optimization and calculation of the solution that was further analyzed with Metabolic Control Analysis.  

Section S2. Rate Equations and parameters included in the model of the glucose catabolic network 

S2.1 Glycolysis 

Glucose transport: 

 Glc Glc
T T o iV k Glc Glc                    [Eq. S1] 

Being Glc
Tk  the diffusion constant of glucose adjusted by linear optimization for each experimental 

condition. Glco stands for the concentration of extracellular glucose.  

Hexokinase (HK): 
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Table S2. Parameter values used in the Hexokinase rate expression 

Symbol Value Units Description Reference 

max
HKV  adjusted mM s-1 Maximal rate of hexokinase  

Glc
M HKK  

 
0.11 mM Michaelis constant for glucose (2) 

ATP
M HKK

 
0.17 mM Michaelis constant for ATP (2) 

6G P
M HKK

 
1.4×10-3 mM Michaelis constant for H6P (2) 

ADP
M HKK

 
1.2 mM Michaelis constant for ADP (2) 

eq
HKK

 
7800 - Equilibrium constant for HK (2) 

ad
TC  14.0 mM Total adenine nucleotides pool (3) 

 
 
Phosphofructokinase (PFK): 
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max,f max,6
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T iPFK PFKi

rATP H P ADP FBP eq
M PFK M PFK M PFK M PFK PFK
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Being: 
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H P ATP ADP FBP ADP

K K K K K

     
           

     
 

6

6
1 . 1 1

H P ATP ADP FBP ADP
M PFK M PFK M PFK M PFK M PFK

H P ATP ADP FBP ADP

K K K K K

     
           
              

 

6

6

H P ATP
M PFK M PFK

H P ATP
M PFK M PFK

K K

K K


 
  

4

1 1

. .
1 1

ATP AMP
i PFK a PFK

o

ATP AMP
i PFK a PFK

ATP AMP
e

K K
L L

ATP AMP
d

K K
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max,
max,r 6

PFK ADP FBP
f M PFK M PFKPFK

G P ATP
M PFK M PFK

V K K
V

K K
  

Table S3. Parameter values used in the phosphofructokinase rate expression 

Symbol Value Units Description Reference 

max,f
PFKV  adjusted mM s-1 Maximal rate of phosphofructokinase  

6H P
M PFKK  

 
0.18 mM Michaelis constant for H6P (4) 

ATP
M PFKK

 
0.08 mM Michaelis constant for ATP (4) 

FBP
M PFKK

 
4.02 mM Michaelis constant for H6P (4) 

ADP
M PFKK

 
1.2 mM Michaelis constant for ADP (4)

6H P
M PFKK  

 
20 mM Michaelis constant for H6P (4) 

ATP
M PFKK

 
0.25 mM Michaelis constant for ATP (4) 

FBP
M PFKK

 
4.02 mM Michaelis constant for H6P (4) 

ADP
M PFKK

 
2.7 mM Michaelis constant for ADP (4)

oL
 

13 mM Michaelis constant for ADP (4)

AMP
a PFKK  

 
0.06 mM Activation constant for AMP (4) 

ATP
i PFKK

 
0.87 mM Inhibition constant for ATP (4) 

d
 

0.01   (4) 

e 0.01   (4)

AMP 0.1 mM Concentration of AMP (3) 

eq
PFKK  242.0  Equilibrium constant (4) 
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Aldolase (ALD): 

 

 

2

max

   

. 
 

1 2

FBP FBP eq
M ALD M ALD ALDALD

ALD

FBP GAP
M ALD M ALD

GAPFBP
K K K

V V
GAPFBP

K K

 
 




 






        [Eq. S4] 

Table S4. Parameter values used in the Aldolase rate expression 

Symbol Value Units Description Reference 

max
ALDV  adjusted mM s-1 Maximal rate of aldolase  

FBP
M ALDK  

 
0.05 mM Michaelis constant for FBP (4) 

GAP
M ALDK  2.1 mM Michaelis constant for GAP (4) 

eq
ALDK  0.12  Equilibrium constant (4) 

 

 

Glyceraldehyde 3 phosphate dehydrogenase (GAPD): 

max,f max,

(C ) . 
 

nGDnGDPyr
T

GAP Pi NAD BPG NADH
M GAPD M GAPD M G

GAPD GAP

APD

D
r

GAPD
GAPD

M GAPD M GAPD

NADHGAP Pi BPG NADH
K K K K

V V
K

V

        





       [Eq. S5] 

max,
max,r

GAPD NADH BPG
f M GAPD M GAPDGAPD

GAP NAD Pi eq
M GAPD M GAPD M GAPD GAPD

V K K
V

K K K K
  

(C ) (C )
1

(C ) . 

nGD nGDPyr Pyr
T T

GAPD GAP NAD Pi GAP NAD
M GAPD M GAPD M GAPD M GAPD M GAPD

nGD nGDPyr
T

GAP Pi NAD BPG NADH
M GAPD M GAPD M GAPD M GAPD M GAPD

NADH NADHGAP Pi GAP

K K K K K

NADHGAP Pi BPG NADH

K K K K K

    
        

   

   
      

   


nGD

BPG NADH
M GAPD M GAPD

BPG NADH

K K
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Table S5. Parameter values used in the Glyceraldehyde 3 phosphate dehydrogenase rate expression 

Symbol Value Units Description Reference 

max,(f)(r)
GAPDV  adjusted mM s-1 Maximal rate of GAPD (forward or 

reverse) 
 

NAD
M GAPDK  

 
9.0×10-3 mM Michaelis constant for NAD (4) 

NADH
M GAPDK  

 
3.3×10-3 mM Michaelis constant for NADH (4) 

GAP
M GAPDK  2.5×10-3 mM Michaelis constant for GAP (4) 

BPG
M GAPDK  8.0×10-4 mM Michaelis constant for BPG (4) 

Pi
M GAPDK  0.29 mM Michaelis constant for Pi (4) 

Pi 3.0 mM Concentration of phosphate  

nGD 0.64 mM Cooperativity coefficient  

Pyr
TC  1.0 mM Total pyridine nucleotides pool (5) 

eq
GAPDK  0.089  Equilibrium constant (4) 

 
Phosphoglycerol kinase (PGK): 

3
max,

max,r

PGK ATP PG
f M PGK M PGKPGK

BPG ADP eq
M PGK M PGK PGK

V K K
V

K K K
                 [Eq. S6] 

3 3

(C ) (C )
1

3 3

ad ad
T T

PGK BPG ADP BPG ADP
M PGK M PGK M PGK M PGK

PG ATP PG ATP
M PGK M PGK M PGK M PGK

ATP ATPBPG BPG
D

K K K K

PG ATP PG ATP

K K K K

 
    

  
 

3max,f max, 
( ) 3ad

T
BPG ADP PG ATP

M PGK M PG

PGK PGK
r

PGK
P

K M P

G

GK M PG

K

K

C ATPBPG PG ATP
K K K

V V
K

V
D
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Table S6. Parameter values used in the Phosphoglycerate kinase rate expression 

Symbol Value Units Description Reference 

max,(f)(r)
PGKV  adjusted mM s-1 Maximal rate of PGK (forward or 

reverse) 
 

BPG
M PGKK  

 
2.2×10-3 mM Michaelis constant for BPG (4) 

3PG
M PGKK  

 
1.2 mM Michaelis constant for 3PG (4) 

ADP
M PGKK  8.0×10-4 mM Michaelis constant for ADP (4) 

ATP
M PGKK  0.35 mM Michaelis constant for ATP (4) 

 

eq
PGKK  57109  Equilibrium constant  (4) 

 
Enolase (Enol): 

max,
max,r 3

Enol PEP
f M EnolEnol

PG eq
M Enol Enol

V K
V

K K
                   [Eq. S7] 

max,f max,3

3

3

3

 

1

Enol Enol
rPG PEP

M Enol M Enol

PG PEP
M Enol M E

Eno

nol

l

PG PEP
K K

PG PEP

V V

V

K K

 
 
 



 
  

Table S7. Parameter values used in the Enolase rate expression 

Symbol Value Units Description Reference 

max,(f)(r)
EnolV  Adjusted mM s-1 Maximal rate of Enol (forward or 

reverse) 
 

3PG
M EnolK  

 
0.12 mM Michaelis constant for BPG (4) 

PEP
M EnolK  

 
0.37 mM Michaelis constant for 3PG (4) 

eq
EnolK  0.49  Equilibrium constant  (4) 

 

 



8 
 

Pyruvate Kinase (PK): 

 

   

max,f max,

  . PEP  .
  

.

    . PEP   . PEP

1
.

1

 
1

.

ad
T iPK PFK i

rADP PEP ATP Py eq
M PK M PK M PK M PK PK

PK ad ad
T i T i i i

ADP PEP ADP PEP ATP Py
M PK M PK M PK M PK M P P M

PK

K M K

L

C ATP ATP Py
V V

K K K K K
V

C ATP C ATP ATP ATP PyPy

K K K K K K K

   
      






 


     

ATP Py
PK M PKK

  [Eq. S8] 

6.8

4 4

1.0 10
1.0 10

1 1

pH

PK

PEP Py FBP GDP
M PK M PK M PK M PK

L
PEP Py FBP GDP

K K K K





 
  

   
      

   

 

max,
max,r

PK ATP Py
f M PK M PKPK

PEP ADP
M PK M PK

V K K
V

K K
  

Table S8. Parameter values used in the Pyruvate kinase rate expression 

Symbol Value Units Description Reference 

max,(f)(r)
PKV  Adjusted mM s-1 Maximal rate of PK (forward or 

reverse) 
 

PEP
M PKK  

 
0.08 mM Michaelis constant for PEP (4) 

Py
M PKK  

 
7.05 mM Michaelis constant for Py (4) 

ADP
M PKK  0.3 mM Michaelis constant for ADP (4) 

ATP
M PKK  1.13 mM Michaelis constant for ATP (4) 

 

FBP
M PKK  0.005 mM Michaelis constant for FBP (5) 

GDP
M PKK  0.1 mM Michaelis constant for GDP (5) 

GDP 0.1 mM Concentration of GDP (5) 

eq
PGKK  10304  Equilibrium constant  (4) 
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Lactate dehydrogenase (LDH):  

         

 

 

   

max,f max,

 . . Py
  

.

  .Py  . Py
1

.

Pyr
TLDH LDH

rNADH Py NAD Lac eq
M LDH M LDH M LDH M LDH LDH

LDH Pyr Pyr
T T

NADH Py NADH Py NAD Lac
M LDH M LDH M LDH M LDH M LDH M LDH M L

C NADH LacNADH
V V

K K K K K
V

C NADH C NADH LacNADH NADH Lac

K K K K K K K





 

 

 
 
 
 

   
NAD Lac

DH M LDHK

  [Eq. S9] 

 

max,
max,r

LDH NAD Lac
f M LDH M LDHLDH

Py NADH
M LDH M LDH

V K K
V

K K
  

Table S9. Parameter values used in the Lactate dehydrogenase rate expression 

Symbol Value Units Description Reference 

max,(f)(r)
LDHV  adjusted mM s-1 Maximal rate of LDH (forward or 

reverse) 
 

NADH
M LDHK  

 
2.0×10-3 mM Michaelis constant for NADH (4) 

NAD
M LDHK  

 
0.849 mM Michaelis constant for NAD (4) 

Py
M LDHK  3.35×10-2 mM Michaelis constant for Py (4) 

Lac
M LDHK  17 mM Michaelis constant for BPG (4) 

eq
LDHK  16198  Equilibrium constant (4) 

 

 

 

S2.2 Glycogenolysis  

_
_ max

_

 
. Gno is n

Gno is Gno
M no isn G

Glc

Glc
V V

K


        [Eq. S10] 
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Table S10. Parameter values used in the glycogen breakdown rate expression 

Symbol Value Units Description 

_
max
Gno isV  

adjusted mM s-1 Maximal rate of glycogen breakdown 

_
Gno

M Gno isK
 
 

5.0 mM Michaelis constant for Glycogen 

nGlc  
 

110 mM Glycogen levels cardiac muscle 

 

Glycogen Phosphorylase (GPa,b):  

max,f max, 1
, ,

1 1
, , , ,

 . Pi  . 1
  

.

    G1     G1
1

GPa GPa
rMal Pi Mal G P

i GPa f M GPa a GPa b a GPa

GPa

Mal Pi Mal G P Mal Pi Mal G P
i GPa f iGPa a GPa b a GPa i GPa f iGPa i GPa b a GPa

Mal Mal G P
V V

K K K K
V

Mal Pi Mal P Mal Pi Mal P
K K K K K K K K

 
 


    

 





                           [Eq. S11] 

max,f max, 1
, ,

1 1
, , , ,

  .  . 1
  

.
.

    G1     G1
1

nH
GPb GPb

rMal Pi Mal G P
i GPb f M GPb iGPb b iGPb

GPb

Mal Pi Mal G P Mal Pi Mal G P
i GPb f iGPb i GPb b iGPb i GPb f iGPb i GPb b iGPb

AMPMal Pi Mal G P
V V

K K K K
V

Mal Pi Mal P Mal Pi Mal P
K K K K K K K K




    

 
  
 

 1
 

AMP
M GPb

nH

AMP
M GPb

K

AMP

K

 
  
 
   




 [Eq. S12] 

( )( ) 1
max, ,( )( )

max,r
,

GP a b Mal G P
f iGP b iGPGP a b

Mal Pi eq
iGP f M GP GP

V K K
V

K K K
  

Table S11. Parameter values used in the Glycogen phosphorylase rate expression 

Symbol Value Units Description Reference 

max,f
PGaV  Adjusted mM s-1 Maximal rate of GPa, forward  

max,f
PGbV  Adjusted mM s-1 Maximal rate of GPb, forward  

,
Mal

iGPa fK  
 

1.7 mM Michaelis constant for Mal (4) 

1G P
a GPaK  1.5 mM Michaelis constant for ADP (4) 
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,
Mal

iGPa bK  0.15 mM Michaelis constant for ATP (4) 
 

Pi
M GPaK  4.0 mM Michaelis constant for FBP (4) 

Pi
iGPaK  4.7 mM Michaelis constant for GDP (4) 

,
Mal

iGPb fK  
 

15 mM Michaelis constant for Mal (4) 

1G P
iGPbK  7.4 mM Michaelis constant for ADP (4) 

,
Mal

iGPb bK  4.4 mM Michaelis constant for ATP (4) 

Pi
M GPbK  0.2 mM Michaelis constant for FBP (4) 

Pi
iGPbK  4.6 mM Michaelis constant for GDP (4) 

AMP
M GPbK  1.9×10-6 mM  (4) 

nH 1.75  Allosteric coefficient for AMP (4) 

eq
GPK  0.42  Equilibrium constant  (4) 

 

Phosphoglucomutase (PGLM): 

max,f

1 1

1 6

1
 

 
1

1

  

6

6

 

G P G P eq
M PGLM M PGLM PGLM

G P G P
M PGLM

PGLM

M PGL

PG

M

LM

G P G P
K K K

V
G

K

V
G P P

K

 
 
 







     [Eq. S13] 

Table S12. Parameter values used in the Phosphoglucomutase rate expression 

Symbol Value Units Description Reference 

max,
PGLM

fV  adjusted mM s-1 Maximal rate of PGLM  

1G P
M PGLMK  

 
0.063 mM Michaelis constant for G1P (4) 

6G P
M PGLMK  0.03 mM Michaelis constant for G6P (4) 

eq
PGLMK  

 
16.62  Equilibrium constant (4) 
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S2.3 Pentose Phosphate pathway 

Glucose 6 phosphate dehydrogenase (G6PDH): 

6
max 6

6 6
6

6
6 6 6 6

6  . (C - NADPH)
.

(C - NADPH)  H6P   
1 1

PyP
G PD T

H P NADP
M G PD M G PD

G PD PyP
T

NADP H P NADPH ATP
M G PD M G PD M G PD M G PD

H P
V

K K
V

NADPH ATP
K K K K


 

     
 

   [Eq. S14] 

Table S13. Parameter values used in the Glucose 6 phosphate dehydrogenase rate expression 

Symbol Value Units Description Reference 

6
max
G PDV  adjusted mM s-1 Maximal rate of LDH (forward or 

reverse) 
 

6
6

H P
M G PDK  

 
6.67×10-3 mM Michaelis constant for H6P (4) 

6
NADP

M G PDK  
 

3.67×10-3 mM Michaelis constant for NADP (4) 

6
NADPH

M G PDK  3.12×10-3 mM Michaelis constant for NADPH (4) 

PyP
TC  0.05 mM Total concentration of Phospho 

pyridine nucleotides pool 
(6) 

6
ATP

M G PDK  0.749 mM Michaelis constant for BPG (4) 

 

6 phosphogluconate dehydrogenase (6 PGO):  

 1 3 5 7 9 2 4 6 8 10

6 6

2 9 4 6 5 6 5 7 1 9 4 6 5 6 5 7 3 5 7 9 2 4 6 8

2 10 4 6 5 6 5 7 1 3 5 7 5 9 6 9 7 9

( ) . 6   . 5  
. 

( ) ( )( ) .6 5

( ) (

PyP
T

PGO PGO PyP
T

k k k k k C NADPH PG k k k k k NADPH Ru P
V E

k k k k k k k k k k k k k k k k C NADPH k k k k PG k k k k Ru P

k k k k k k k k NADPH k k k k k k k k k k

 


       

      

1 4 6 8 3 5 7 10 8 10 2 4 2 5 2 6 4 6

1 3 8 5 6 3 8 10 5 6

)( ).6

( ). 5 .6 . ( ). 5 .

( )( ).6 . 5 ( ).6 . 5 .

PyP
T

PyP
T

PyP
T

C NADPH PG

k k k k C NADPH Ru P k k k k PG NADPH k k k k k k k k k k Ru P NADPH

k k k k k C NADPH PG Ru P k k k k k PG Ru P NADP

 
 

  
        
      




[Eq. S15] 

Table S14. Parameter values used in the 6 phosphogluconate dehydrogenase rate expression 

Symbol Value Units Description Reference 

6PGOE  adjusted mM Maximal concentration of 6PGO  

1k  
 

2.4×103 s-1 Rate constant  (7) 



13 
 

2k  
 

4.1×102 s-1 Rate constant (7) 

3k  2.0×106 mM-1s-1 Rate constant  (7) 

4k  26 mM-1s-1 Rate constant (7) 

5k  
 

48.0 s-1 Rate constant  (7) 

6k  
 

30.0 s-1 Rate constant (7) 

7k  
 

6.3×102 s-1 Rate constant  (7) 

8k  
 

36 mM-1s-1 Rate constant (7) 

9k  
 

8.0×102 s-1 Rate constant  (7) 

10k  
 

2.25×102 mM-1s-1 Rate constant (7) 

 

Ribose 5P Isomerase (R5PI): 

3 2

2 3 2 3

1 4
5

2 3 2 3

5

1 4

5 5
( ) ( )

5 5
( ) ( )

1
R PI R PI

k Ru P k R P
k k k k

k k
Ru P R P
k k k

V E

k

k k

 
 
 

  
 
 


 






      [Eq. S16] 

Table S15. Parameter values used in the Ribose 5 phosphate isomerase rate expression 

Symbol Value Units Description Reference 

5R PIE  adjusted mM Maximal concentration of R5PI  

1k  
 

60.9 mM-1s-1 Rate constant  (7) 

2k  
 

33.3 s-1 Rate constant (7) 

3k  14.2 mM-1s-1 Rate constant  (7) 

4k  21.6 mM-1s-1 Rate constant (7) 
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Ribulose 5P Epimerase (Ru5PE): 

3 2

2 3

5 5

2 3

1 4

2 3 2 3

1 4

5

1

5
( ) ( )

5 5
( ) ( )

Ru PE Ru PE

k Ru P k X P
k k k k

k k
Ru P X P
k k k k

k k

V E

 
 
 

  
 
 


 






      [Eq. S17] 

Table S16. Parameter values used in the Ribulose 5 phosphate epimerase rate expression 

Symbol Value Units Description Reference 

5Ru PEE  adjusted mM Maximal concentration of Ru5PE  

1k  
 

3.91×103 mM-1s-1 Rate constant  (7) 

2k  
 

4.38×102 s-1 Rate constant (7) 

3k  3.05×102 s-1 Rate constant  (7) 

4k  1.49×103 mM-1s-1 Rate constant (7) 

 

Transketolase 1 (TK1): 

 1 3 5 7 2 4 6 8
1 1

1 3 6 7 5 7 2 3 2 4 6 7 6 8 2 3

1 5 3 7 4 8 2 6 5 8 2 3 1 4 6 7

. 5  . 5  .  . 7  
. 

( ). 5 ( ). 5 ( ) ( ) 7

( ). 5 . 5 ( ). . 7 ( ). 5 . 7 ( ). 5 .

TK TK

k k k k X P R P k k k k GAP S P
V E

k k k k X P k k k k R P k k k k GAP k k k k S P

k k k k X P R P k k k k GAP S P k k k k R P S P k k k k X P GAP




       
         

  

[Eq. S18] 

 

Table S17. Parameter values used in the Transketolase 1 rate expression 

Symbol Value Units Description Reference 

1TKE  adjusted mM Maximal concentration of TK1  

1k  
 

2.16×102 mM-1s-1 Rate constant  (7) 

2k  
 

38.0 s-1 Rate constant (7) 
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3k  34.0 s-1 Rate constant  (7) 

4k  1.56×102 mM-1s-1 Rate constant (7) 

5k  
 

3.29×102 mM-1s-1 Rate constant  (7) 

6k  
 

1.75×102 s-1 Rate constant (7) 

7k  
 

40 s-1 Rate constant  (7) 

8k  
 

44.8 mM-1s-1 Rate constant (7) 

 

Transaldolase (TAL): 

 1 3 5 7 2 4 6 8

1 3 6 7 5 7 2 3 2 4 6 7 6 8 2 3

1 5 3 7 4 8 2 6 5 8 2 3 1 4 6 7

.  . 7  . 4  . 6  
.  

( ). 7 ( ). ( ) 4 ( ) 6

( ). 7 . ( ). 4 . 6 ( ). 7 . 6 ( ). . 4

  

TAL TAL

k k k k GAP S P k k k k E P H P
V E

k k k k S P k k k k GAP k k k k E P k k k k H P

k k k k S P GAP k k k k E P H P k k k k S P H P k k k k GAP E P




       
         

 

  

[Eq. S19] 

Table S18. Parameter values used in the transketolase 1 rate expression 

Symbol Value Units Description Reference 

TALE  adjusted mM Maximal concentration of TAL  

1k  
 

2.16×102 mM-1s-1 Rate constant  (7) 

2k  
 

4.53 s-1 Rate constant (7) 

3k  16.3 s-1 Rate constant  (7) 

4k  30.0 mM-1s-1 Rate constant (7) 

5k  
 

4.9×102 mM-1s-1 Rate constant  (7) 

6k  
 

60.0 s-1 Rate constant (7) 

7k  
 

17.0 s-1 Rate constant  (7) 

8k  
 

79.0 mM-1s-1 Rate constant (7) 
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Transketolase 2 (TK2): 

 1 3 5 7 2 4 6 8
2 2

1 3 6 7 5 7 2 3 2 4 6 7 6 8 2 3

1 5 3 7 4 8 2 6 5 8 2 3 1 4 6 7

. 5  . 4  .  . 6  
. 

( ). 5 ( ). 4 ( ) ( ) 6

( ).X5 . 4 ( ). . 6 ( ). 5 . 6 ( ). 4 .

TK TK

k k k k X P E P k k k k GAP H P
V E

k k k k X P k k k k E P k k k k GAP k k k k H P

k k k k P E P k k k k GAP H P k k k k X P H P k k k k E P GAP




       
         

 

[Eq. S20] 

 Table S19. Parameter values used in the Transketolase 2 rate expression 

Symbol Value Units Description Reference 

2TKE  adjusted mM Maximal concentration of TK1  

1k  
 

21.6 mM-1s-1 Rate constant  (7) 

2k  
 

3.8 s-1 Rate constant (7) 

3k  1.72×102 s-1 Rate constant  (7) 

4k  1.57×102 mM-1s-1 Rate constant (7) 

5k  
 

2.24×103 mM-1s-1 Rate constant  (7) 

6k  
 

1.75×102 s-1 Rate constant (7) 

7k  
 

40 s-1 Rate constant  (7) 

8k  
 

21.3 mM-1s-1 Rate constant (7) 

 

S2.4 Polyol Pathway 

Aldose Reductase (ALDR): 

2
1

1 1
2 2 2

1 2
2
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. .    
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k C NADPH Sor
k NADPH Glc

K
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k k k k
k k k k k NADPH k k Glc Sor C NADPH

K K

k k k k
k Glc NADPH Sor C NADPH Glc C

k K k

 
 






    

  









1 2 1

 

)
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NADPH
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      [Eq. S21] 
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1

2

p iqeq
ALDR

b ia

k k k
V

k k k
  

Table S20. Parameter values used in the Aldose reductase rate expression 

Symbol Value Units Description Reference 

ALDRE  adjusted mM Maximal concentration of ALDR  

1k  
 

0.33 s-1 Rate constant  (8) 

2k  
 

0.037 s-1 Rate constant (8) 

ak  6.9×10-4 mM Michaelis constant for NADPH  (8) 

bk  46 mM Michaelis constant for Glc (8) 

pk  
 

3.8×102 mM Michaelis constant for Sor (8) 

qk  
 

1.5×10-2 mM Michaelis constant for NADP (8) 

iak  
 

4.1×10-4 mM Dissociation constant for NADPH  (8) 

ibk  
 

9.2×10-2 mM Dissociation constant for Glc  (8) 

ipk  
 

1.3 ×103 mM Dissociation constant for Sor  (8) 

iqk  
 

8.3×10-3 mM Dissociation constant for NADP (8) 

 

Sorbitol Dehydrogenase (SoDH): 

 
   max,f

max,

  . 

.  .  

.
 

. . . .

.

Pyr
TSoDH

SoDH NAD Sor Sor Pyr NAD Pyr
iSoDH M SoDH M SoDH T M SoDH T

SoDH
r NADH Fru Fru NADH

iSoDH M SoDH M SoDH M SoDH

C NADH Sor
V V

K K K C NADH K Sor C NADH

NAD

So

H Fru
V

K K K NADH K Fru NADH Fr

r

u




   


 






  [Eq. S22] 

 

max,
max,r

SoDH Fru NADH
f M SoDH M SoDHSoDH

Sor NAD eq
M SoDH M SoDH SoDH

V K K
V

K K K
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Table S21. Parameter values used in the Sorbitol dehydrogenase rate expression 

Symbol Value Units Description Reference 

max,
SoDH

fV  adjusted mM s-1 Maximal concentration of SoDH  

NADH
M SoDHK  

 
1.0×10-2 mM Michaelis constant for NADH (9) 

Fru
M SoDHK  

 
1.0×103 mM Michaelis constant for Fru (9) 

Sor
M SoDHK  9.6 mM Michaelis constant for Sor (9) 

NAD
M SoDHK  2.0 mM Michaelis constant for NAD (9) 

NADH
i SoDHK

 
1.0×10-2 mM Dissociation constant for NADH (9) 

NAD
i SoDHK  

 
2.0 mM Dissociation constant for NAD (9) 

eq
SoDHK

 
9.25×10-2  Equilibrium constant (9) 

 

Xylitol Dehydrogenase (XDH): 

 
   

max,f

max,

 . 5

. . . 5

.
 

. . . .

. 5
XDH

XDH NADH Xy Xy NADH
i XDH M XDH M XDH M XDH

Pyr
TXDH

r NAD XyOH XyOH Pyr NAD Pyr
i XDH M XDH M XDH T M XDH T

NADH X P
V V

K K K NADH K X P NADH

C NADH XyOH
V

K K K C NADH K XyOH C NADH X

X

yOH

P


 




    





       [Eq. S23] 

max,
max,r

XDH XyOH NAD
f M XDH M XDHXDH

Xy NADH eq
M XDH M XDH XDH

V K K
V

K K K
  

 

Table S22. Parameter values used in the Xylitol dehydrogenase rate expression 

Symbol Value Units Description Reference 

max,
XDH

fV  adjusted mM s-1 Maximal concentration of XDH  

NADH
M XDHK  

 
1.0×10-2 mM Michaelis constant for NADH (9) 

XyOH
M XDHK  

 
8.08×10-1 mM Michaelis constant for XyOH (10) 
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Xy
M XDHK  20.0 mM Michaelis constant for X5P (10) 

NAD
M XDHK  2.0 mM Michaelis constant for NAD (9) 

NADH
i XDHK

 
1.0×10-2 mM Dissociation constant for NADH (9) 

NAD
i XDHK  

 
2.0 mM Dissociation constant for NAD (9) 

eq
XDHK

 
0.24  Equilibrium constant (9) 

 

S2.5 ATPase, non-glycolytic NADH consumption, NADPH consumption, polyol transport 

The rate expressions corresponding to NADH, NADPH and ATP consumption as well as polyol 
transport have been added to the present computational model to enable steady state behavior. Standard 
hyperbolic relations were assumed for each of the rate expressions. 

max

1

ATP
M ATATPase

ATPa
Pase

ATP
M ATPa

e

e

s

s

ATP
K

ATP
K

V V


      [Eq. S24] 
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    [Eq. S25] 
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   [Eq. S26] 
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       [Eq. S27] 
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Table S23. Parameter values 

Symbol Value Units Description 

max
ATPaseV  adjusted mM s-1 Maximal Rate of ATPase 

ATP
M ATPaseK  

 
9.0 mM Michaelis constant for ATP 

max
NADHcV  

 
Adjusted mM s-1 Maximal rate of NADH consumption 

NADH
M NADHcK  0.05 mM Michaelis constant for NADH 

NAD
M NADHcK  0.7 mM Michaelis constant for NAD 

max
NADPHcV  

 
Adjusted mM s-1 Maximal rate of NADPH 

consumption 

NADPH
M NADPHcK  2.5×10-2 mM Michaelis constant for NADPH 

NADP
M NADPHcK  7.5×10-3 mM Michaelis constant for NADP 

FruTk  Adjusted mM s-1 Rate constant of Fru transport 

Fru
FruTK  3.0 mM Michaelis constant for Fru 

XyOHTk  Adjusted mM s-1 Rate constant of XyOH transport 

XyOH
XyOHTK  1.5 mM Michaelis constant for XyOH 

 

 

Table S24. Selected Vmax values obtained with different optimization criteria 

Vmax (I) a (II) (III) (IV) 

Glc
Tk  0.00084 b, c 

 

0.00308 

 

0.00184 

 

1.00 

 

max
HKV  0.0387 

 
0.0571 

 
0.00 

 
0.0596 

 

max,f
PFKV  0.00452 

 
4.9 × 10-7 

 
0.00322 

 
0.00 

 

max,(f)(r)
GAPDV  0.00792 

 
0.00792 

 
0.0197 

 
0.00792 

 



21 
 

max,(f)(r)
PGKV  0.0622 

 
0.675 

 
0.0622 

 
0.0622 

 
6

max
G PDV  0.00 

 
0.0512 

 
0.00 

  
0.0512 

 

ALDRE  0.00 
 

0.0626 
 

0.0626 
 

0.0626 
 

max,
XDH

fV  0.234 
 

0.764 
 

1.00 
 

0.764 
 

_
max
Gno isV  0.00137 

 
0.0195 

 
0.0032 

 
0.019 

 
 a Optimization criteria: (I) Minimization of ATP and NADPH generation; (II) Maximization of ATP generation; (III) 
Maximization of NADH generation; (IV) Maximization of Pentose Phosphate flux. 
Objective functions follow the general form: minimize Z = ∑ ci × Vi,max, where Z is the objective function and ci (weighing 
coefficient) can be one or zero for each i reaction in the network according to the optimization criterion. For maximization 
purposes, the minimization of the negative of Z is performed.   
b Vmax values are expressed in mM s-1 units, or mM in case of ALDRE or s-1 in case of 

Glc
Tk  

c Vmax correspond to the maximal values in the volume of solutions, i.e. these values delimit the coordinates of the vertices 
of the volume of solutions obtained with each objective function (see Fig.S1 below for illustration). 

Section S3. Maximal relative error associated with the calculation of Vmax  

A source of error associated with the estimation of the fluxes according to the present procedure is given 
by the variability in the experimental determination of metabolites concentration. This source of error 
will affect the matrix that contains the derivatives of rate expressions with respect to Vmax. Equation 1 
from the main text can be rewritten as  

St . DrV. Vmax  =  bt     [Eq. S29]  

Being St a square matrix obtained by appending the stoichiometric matrix S with a matrix of size p × m, 
where p=m-n, and contains 1 and 0. Obtaining a non-singular square matrix is required in order to be 
able to invert it. bt the vector of transport and demand processes, e.g. biosynthesis, is also appended with 
a vector containing p elements that correspond to the measured flux rates. DrV is the diagonal matrix of 
the derivatives of the rate expressions with respect to the Vmax of each rate.   
In addition to variability in the experimental values of the transport or demand processes taken into 
account in vector bt, sources of variability in the determination of metabolites or in parameter values in 
each rate expression, such as the affinities of enzymes for their respective substrates, or effectors are 
reflected by the variability of DrV.   

St . DrV Vmax  =  bt    [Eq. S30] 

Following the treatment in (11), the matrix norm can be obtained: 

‖ St ‖ . ‖ DrV ‖ . ‖Vmax ‖ ≤ ‖ bt ‖    [Eq. S31]  

which can be rearranged as 

‖ Vmax ‖ ≤ ‖ St
-1

 ‖ . ‖ DrV
-1 ‖ . ‖ bt ‖    [Eq. S32] 
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Equations S31 and S32 lead to an expression for the maximum relative error in the determination of 

Vmax as follows: 

        [Eq. S33] 

 

Section S4. Estimation of the error associated with the computed Vmax values due to variability in 
metabolites concentration 

For the present work we estimated the error arising from variability in the concentration of metabolites. 
The results were obtained by computing the values of the Vmax that would be obtained if all the 

metabolites values were Sav – S, or Sav + S, with Sav being the experimentally determined mean 

concentration value informed in Table 1 and S the standard error. The Vmax at both extremes (Sav – S 

and Sav + s) was calculated, and the largest value of Vmax = Vmax (Sav) – Vmax (Sav –s) or = Vmax (Sav) 

– Vmax (Sav + s). Since different values of Vmax were obtained at both extremes, the value informed in 

Table S25 corresponds to the largest Vmax estimated. 
 
Table S25. Estimated relative error in Vmax values  

Vmax Vmax Vmax/Vmax
a 

Glc
Tk  0.00308 

 

0.58 

 

max
HKV  0.0571 

 
0.82 

 

max,f
PFKV  4.9 × 10-7 

 
0.13 

 

max,(f)(r)
GAPDV  0.00792 

 
0.0072 

 

max,(f)(r)
PGKV  0.675 

 
0.0067 

 
6

max
G PDV  0.0512 

 
0.091 

 

ALDRE  0.0626 
 

0.46 
 

max,
XDH

fV  0.764 
 

0.28 
 

_
max
Gno isV  0.0195 

 
0.28 

 
aVmax/Vmax, where Vmax corresponds to calculated Vmax at the Sav, and Vmax is the largest value 

calculated at both extremes. 

1 1

max

1
max

. .
t r t

t tr

S D VV b

V S bD V

 



 




23 
 

Section S5. Matrixes used in the optimization of Vmax values and Control Analysis (see Sections 2.2 - 

2.4 from Modeling and Experimental Methods in the main text for further explanation). 

Stoichiometry matrix (for internal metabolites): 

0,1, 1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,1, 1,1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1

0,0,0,1, 1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

     
  ,0,0,0

0,0,0,0,0,2, 2, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1, 1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,1, 1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

    
  0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,1, 1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,1, 1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 
  0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1, 1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,


   0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,0,0, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1, 1,1, 1,1,0,0,0,0,0,0, 1,1,0,0,0,0,

 
    0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,0,0, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1, 1,0,0,0,0,0,0,0,0,0,

 
  0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,1, 1,0,0,0,0,0,0, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1, 1,1,0,

 
    0,0, 1,1,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 1,0,0,0,0,0,0,0,0,0,0, 1,1,0,0,0,0,0,0,0,0,0, 1,1,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,


  

0,0,0,0,0,0,0,1, 1,1, 1,1,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1, 1, 1,1

 
 
 
 
 
 


 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 




  

 

Stoichiometry matrix (for external metabolites): 

1,1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

  
  0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,0,1,0,0,0,0,0,0,0,0,0,0,


 0,0
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Elasticity matrix: 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

6

6

0

Glc
T

i

HK HK HK HK

i i

PFK PFK PFK PFK

ALD ALD

GAPD

V

Glc

V V V V

Glc H P ATP ADP

V V V V

H P FBP ATP ADP
V V

FBP GAP
V

GA



   
   

   
   

 
 




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

3

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GAPD GAPD GAPD

PGK PGK PGK PGK

Enol Enol

PK PK PK PK

V V V

P BPG NADH NAD
V V V V

BPG PG ATP ADP
V V

PG PEP
V V V V

PEP Py ATP ADP

  
  

   
   

 
 

   
   

6 6 6 6

6 6 6

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6

6
0 0

5

LDH LDH LDH

Py
T

G PD G PD G PD G PD

PGO PGO PGO

V V V

Py NADH NAD

V

Py

V V V V

H P ATP NADPH NADP
V V V

PG Ru P NADPH

  
  




   
   

   
  

6

5 5

5 5

1 1 1 1

2 2 2 2

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

5 5

5 5

5 5 7

6
0

5

PGO

R PI R PI

Ru PE Ru PE

TK TK TK TK

TK TK TK TK

V

NADP
V V

Ru P R P
V V

Ru P X P
V V V V

GAP R P X P S P
V V V V

H P GAP X P


 
 
 
 

   
   

   
    4

6 7

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

4
TAL TAL TAL TAL

ALDR ALDR ALDR ALDR

i

SoDH SoDH SoDH SoDH

E P
V V V V

H P GAP S P E P
V V V V

Glc Sor NADPH NADP

V V V V

Sor Fru NADH NAD

   
   

   
   

   
   

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Section S6. Sample Preparation and Metabolic Profiling 
The non-targeted metabolic profiling platform employed for this analysis combined three independent 

platforms:  ultrahigh performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) 
optimized for basic species, UHPLC/MS/MS optimized for acidic species, and gas 
chromatography/mass spectrometry (GC/MS). Samples were processed essentially as described 
previously (12, 13).  For each sample, an equivalent amount of heart tissue was used for analysis.  Using 
an automated liquid handler (Hamilton LabStar, Salt Lake City, UT), protein was precipitated with 
methanol that contained four standards to report on extraction efficiency.  The resulting supernatant was 
split into equal aliquots for analysis on the three platforms.  Aliquots, dried under nitrogen and vacuum-
desiccated, were subsequently either reconstituted in 50μL 0.1% formic acid in water (acidic conditions) 
or in 50μL 6.5mM ammonium bicarbonate in water, pH 8 (basic conditions) for the two 
UHPLC/MS/MS analyses or derivatized to a final volume of 50μL for GC/MS analysis using equal parts 
bistrimethyl-silyl-trifluoroacetamide and solvent mixture acetonitrile:dichloromethane:cyclohexane 
(5:4:1) with 5% triethylamine at 60°C for one hour.  In addition, three types of controls were analyzed in 
concert with the experimental samples: aliquots of a “client matrix” formed by pooling a small amount 
of each sample served as technical replicates throughout the data set, extracted water samples served as 
process blanks, and a cocktail of standards spiked into every analyzed sample allowed instrument 
performance monitoring.  Experimental samples and controls were randomized across one platform run 
day. 

 

Figure S1.  Space solution of a hypothetical metabolic network 
Because in the network shown in the left panel there are 3 fluxes and only 1 metabolite, the solution 
space is 2-dimensional thus corresponding to a surface of solutions. According to the procedure 
described in Methods, section 2.3 of the main text, the solution chosen fulfils two conditions: (i) 
Vmax>0 for all enzymes in the network; and (ii) belongs to the solution space, more precisely, to the 
vertices (right panel, thick white arrows). Adapted from Price et al. (1) 
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For UHLC/MS/MS analysis, aliquots were separated using a Waters Acquity UPLC (Waters, Millford, 
MA) and analyzed using an LTQ mass spectrometer (Thermo Fisher Scientific, Inc., Waltham, MA) 
which consisted of an electrospray ionization (ESI) source and linear ion-trap (LIT) mass analyzer.  The 
MS instrument scanned 99-1000 m/z and alternated between MS and MS2 scans using dynamic 
exclusion with approximately 6 scans per second.  Derivatized samples for GC/MS were separated on a 
5% phenyldimethyl silicone column with helium as the carrier gas and a temperature ramp from 60°C to 
340°C and then analyzed on a Thermo-Finnigan Trace DSQ MS (Thermo Fisher Scientific, Inc.) 
operated at unit mass resolving power with electron impact ionization and a 50-750 atomic mass unit 
scan range. 

Metabolites were identified by automated comparison of the ion features in the experimental samples 
to a reference library of chemical standard entries that included retention time, molecular weight (m/z), 
preferred adducts, and in-source fragments as well as associated MS spectra, and were curated by visual 
inspection for quality control using software developed at Metabolon (14). 

For statistical analyses and data display purposes, any missing values were assumed to be below the 
limit of detection and these values were imputed with the compound minimum (minimum value 
imputation). Statistical analysis of log-transformed data was performed using “R” (http://cran.r-
project.org/), which is a freely available, open-source software package.  A two-way ANOVA is used to 
identify biochemicals that differ significantly between experimental groups. P-values ≤0.05 are 
considered statistically significant and p-values <0.10 are reported as trends.  Multiple comparisons are 
accounted for by estimating the false discovery rate (FDR) using q-values (15). 
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