Subdomain interactions foster the design of two protein pairs with ~80% sequence identity but different folds

Supporting information

Lauren L. Porter^{1,2,*} Yanan He¹, Yihong Chen¹, John Orban^{1,3}, and Philip N. Bryan^{1,2}

¹University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA ²Potomac Affinity Proteins, Rockville, MD 20850, USA ³University of Maryland, Department of Chemistry and Biochemistry, College Park, MD 20742, USA ^{*}Corresponding author: <u>llporter@umd.edu</u>

Variant	Sequence ^{1,2}
G _A (PSD-	MEAVDANSLAQAKEAAIKELKQYGIGDYYIKLINNAKTVEGVESLKNEILKALPTE
1)	
⁵⁴ GA _{MBP}	NGDKDANSLAEAKEAAIKELKQYGIGEYYIKLIENAKTVEGVESLKDEILKALPRF
⁶³ GA _{MBP}	NGDKDANSLAEAKE <mark>K</mark> AIKELK <mark>I</mark> YGIGEHYIKLIENAKQVEAVESLKDEILKALPRF
$^{64}\text{GA}_{\text{MBP}}$	NGDKDANSLAEAKEKAIKELKIYGIGEHYIKLIENAKQVAAVESLKDEILKALPRF
$^{68}\text{GA}_{\text{MBP}}$	NGDKDANSLAEAKEKAIK <mark>D</mark> LKIYGIGEHYIKLIENAKQVAAVE <mark>D</mark> LKDEILKALPRF
70 GA _{MBP}	NGDKDANSLAEAKEKAIK <mark>D</mark> LKIYGIGEHYIKLIE <mark>K</mark> AKQVAAVEDLKDEILKALPRF
75 GA _{MBP}	NGDK <mark>G</mark> ANSLAEAKEKAIK <mark>D</mark> LKIYGIGEHYIKLIEKAKQVAAVEDLKDEILKA <mark>HD</mark> RF
⁷⁷ GA _{MBP}	NGDKG <mark>Y</mark> NSLAEAKEKAIK <mark>D</mark> LKIYGIGEHYIKLIEKAKQVAAVEDLKDEILKAHDRF
⁷⁹ GA _{MBP}	NGDKGYN <mark>G</mark> LAEAKEKAIK <mark>D</mark> LKIYGIGEHYIKLIEKAKQVAAVEDLKDEILKAHDRF
⁸⁰ GA _{MBP}	NGDKGYN <mark>G</mark> LAEAKEKAIK <mark>D</mark> LKIYGIGEHYIKLIEKAKQVAAVEDLKD <mark>I</mark> ILKAHDRF
MBP	NGDKGYNGLAEVGK <mark>K</mark> FEKDTG <mark>I</mark> KVTV <mark>EH</mark> PD <mark>KLEEK</mark> FP <mark>QVAA</mark> TG <mark>D</mark> GP <mark>DII</mark> FW <mark>AHDRF</mark>
⁷¹ MBP _{GA}	NGDKGYNGLAEVG <mark>E</mark> KFEKDTGIKV <mark>I</mark> VEHYIKLEEKF <mark>K</mark> QVAAVGDGPDIIFWAHDRF
⁷⁵ MBP _{GA}	NGDKGYNGLAEVGEKFEKDTGIKVIVEHYIKLEEKFKQVAAV <mark>E</mark> DGPDII <mark>L</mark> WAHDRF
⁷⁹ MBP _{GA}	NGDKGYNGLAEVGEK <mark>A</mark> EKDLGIKVIVEHYIKLEEKFKQVAAVEDGPDIILWAHDRF
⁸⁰ MBP _{GA}	NGDKGYNGLAEAG <mark>E</mark> KAEKDLGIKVIVEHYIKLEEK <mark>F</mark> KQVAAVEDGPDIILWAHDRF
⁵⁹ GA _{OspA}	LDEKNANSLAQAKEMAIKELKEYGIDDYYIKLINNAKTVEGVESLKNNILKALEGV
⁶⁶ GA _{OspA}	LDEKN <mark>SV</mark> SL <mark>D</mark> QAKEMAIKELKEYGIDDYYIKLINNAKTVEGVESLKNNILK <mark>V</mark> LEGV
⁷⁰ GA _{OspA}	LDEKNSVSLDQAKEMAIKELKEYGIDD <mark>K</mark> YIKLI <mark>T</mark> NAKTVEGVESLKNNIL <mark>G</mark> VLEGV
⁷⁷ GA _{OspA}	LDEKNSVSLDQAKEMAIKELKEYGIDDKYILLITVAKTVLKVESLKNNILGVLEGV
OspA	LDEKNSVSVDLPGEMKVLVSKEKNKDGKYDLIATVDKLELKGTSDKNNGSGVLEGV
⁶⁸ GA _{OSPA}	LDEKNSVSVDLPGEMK <mark>IK</mark> VSKE <mark>YG</mark> KD <mark>D</mark> KY <mark>I</mark> LIATVDKLELKGTSDKNNGSGVLEGV
$^{73}GA_{OSPA}$	LDEKNSVSVDLPGEMKIKVSKEYGKDDKYILIATVDKTVLKGESDKNNGSGVLEGV
⁷⁷ GA _{OspA}	LDEKNSVSVDLPGEMAIKVSKEYGIDDKYILIATVDKTVLKGESDKNNGSGVLEGV
¹ Colored	packgrounds indicate new mutations. Font colors are changed

Table S1A. High-identity protein variants.

thereafter. ²Colors correspond to classifications in Table S1B, except yellow backgrounds,

which indicate residues identical to the highest-identity folded G_A variant

Minor	Moderate	Significant
Irregularly structured N- and C-terminal residues with that do not form hydrophobic contacts or hydrogen bonds	Hydrophobic/hydrophilic surface residues \leftrightarrow other hydrophobic/hydrophilic residues (e.g. $I \leftrightarrow V \leftrightarrow T$, $L \leftrightarrow N \leftrightarrow D$, $L \leftrightarrow M \leftrightarrow K$, $L \rightarrow A$, $V \rightarrow A$, etc.)	Glycine populating disallowed regions of the alanyl Ramachandran plot→ anything else
Charged and polar surface residues whose side chains do not hydrogen bond to the backbone \rightarrow residues with similar steric effects and electrostatic properties (e.g. N \leftrightarrow D, Q \leftrightarrow E, K \leftrightarrow R, D \leftrightarrow E, N \leftrightarrow Q, S \leftrightarrow T)	Helical residue →high moderate helix propensity (e.g. A → L)	Residues with ϕ – ψ angles outside of proline's sterically-allowed boundaries →proline
Attractive surface mutation: changing a residue that had repulsive electrostatic interactions with neighboring residues to one that no longer causes repulsive interactions	Strand residue \rightarrow high moderate strand propensity (e.g. V \rightarrow T)	Helical residue \rightarrow residue much lower helix propensity (e.g. A \rightarrow G)
	Surface hydrophobic to surface hydrophilic (e.g. L->K)	Strand residue \rightarrow residue much lower strand propensity (e.g. V \rightarrow P)
	Change in loop residue	Repulsive surface mutation from accumulating multiple residues with the same charge in close proximity on the protein surface
		Any changes to hydrophobic core residues
		Hydrophobic surface residue likely to cause aggregation

Table S1B. Anticipated destabilizing effects of mutations

Experimental restraints					
CS-Rosetta input					
¹³ C ^α shifts	56				
¹³ C ^β shifts	51				
¹³ C' shifts	55				
¹⁵ N shifts	55				
¹ H ^N shifts	55				
1 H $^{\alpha}$ shifts	52				
	52				
PMSDs to the mean structure $(Å)$					
Over residues $8-54$					
Backhone atoms	0 54 + 0 16				
Heavy atoms	1.07 ± 0.10				
Secondary structures ^a	1.07 ± 0.24				
Backhone atoms	0.46 ± 0.15				
	0.40 ± 0.13				
Heavy atoms	0.00 ± 0.22				
Macauraa of atrustura quality					
Demochandron distribution					
Most forward regions (9/)	09 6 1 1 6				
Most lavored regions (%)	98.0 ± 1.0				
Additionally allowed regions (%)	1.4 ± 1.6				
Generously allowed regions (%)	0.0 ± 0.0				
Disallowed regions (%)	0.0 ± 0.0				
Bad contacts/100 residues	0.4 ± 0.5				
Overall dihedral G factor	0.55 ± 0.03				

Table S2: Summary of structure statistics for $^{79}GA_{\rm MBP}$

^a The secondary structure elements used were residues 8-23, 27-35 and 39-52.

Variant Name ¹	Experimentally-	Experimentally-	Predicted $\Delta\Delta G^{3,4}$
	measured T _M (°C)	derived $\Delta\Delta G^{2,4}$	(kcal/mol)
		(kcal/mol)	
$^{63}GA_{\mathrm{MBP}}$	80	0.29	0.55
$^{64}\mathrm{GA}_\mathrm{MBP}$	76	0.23	0.18
⁶⁸ GA _{MBP}	62	0.86	1.43
$^{70}\mathrm{GA}_\mathrm{MBP}$	63	-0.06	0.00
$^{79}\mathrm{GA}_\mathrm{MBP}$	55	0.50	0.68
$^{80}\mathrm{GA}_\mathrm{MBP}$	53	-0.06	0.09
71 MBP _{GA}	58	3.6	3.17
⁷⁵ MBP _{GA}	56	1.42	3.41
⁷⁹ MBP _{GA}	56	0	3.65
⁸⁰ MBP _{GA}	55	0.72	3.43

Table S3

¹Variant names correspond to constructs in Figure 4. Mutations with disordered ends were excluded

²Determined by multiplying ΔT_M by ΔS . ΔS values were determined from calorimentric measurements in [1] for G_A and reference [2] for MBP. ³Values determined from PoPMuSiC 2.1 (reference 36 in the main text).

⁴Values in red denote a significant deviation from predicted $\Delta\Delta G$. We defined significant > 1 kcal/mol difference between experimental and predicted values.

Figure S1A. CD Spectra of all 3 G_A variants (⁷⁹GA_{MBP}, black; ⁸⁰GA_{MBP}, red; ⁷⁷GA_{OspA}, purple) are consistent with one another. ⁷⁹GA_{MBP} is known to adopt a 3- α -helix bundle structure (see main text). All spectra were measured in 100 mM potassium phosphate buffer, pH 6.8.

Figure S1B. Both G_A variants ($^{80}GA_{MBP}$, red; $^{77}GA_{OspA}$, purple) unfold cooperatively in response to heat. All measurements were taken in 100 mM potassium phosphate buffer, pH 6.8.

Fig. S2: The 2D ¹⁵N HSQC spectra for A) ⁸⁰GA_{MBP} and B) ⁷⁷GA_{OspA} indicate well-folded proteins. Both were acquired at 10°C in 100 mM potassium phosphate buffer, pH 7.0.

Figure S3A. The CD Spectrum of ${}^{80}MBP_{GA}$ (blue) is consistent with that of wild-type MBP (black). Both spectra were measured in 100 mM potassium phosphate buffer, pH 6.8.

Figure S3B. The CD Spectrum of 77 OspA_{GA} (green) is consistent with that of wild-type OspA (black). Both spectra were measured in 100 mM potassium phosphate buffer, pH 6.8.

Fig. S4: Experimentally-measured $\Delta\Delta Gs$ correspond well to predicted values (positive correlation, R²=0.94) for G_A (red) but not for MBP (blue, negative correlation, R²=0.98). This suggests that interactions with neighboring subdomains compensated for mutations that would have likely destabilized the MBP destination fold in isolation. Lines of best fit are shown in black for both plots.

SUPPORTING REFERENCES

[1] He, Y., Rozak, D.A., Sari, N., Chen, Y., Bryan, P.N., and J. Orban, 2006. Structure, Dynamics, and Stability Variation in Bacterial Albumin Binding Modules: Implications for Species Specificity. *Biochemistry* 45:10102-10109

[2] Ganesh, C., A.N. Shah, C.P. Swiminathan, A. Surolia, and R. Varadarajan, 1997. Thermodynamic characterization of the reversible, two-state unfolding of maltose binding protein, a large two-domain protein. *Biochemistry* 36:5020-5028.