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1. Mutation matrix Q
Let Cn denote a random variable modeling a single base in generation n at some locus with state space the sequence
alphabet A. Let c, d ∈ A, c 6= d, be two bases from the alphabet. The mutation rate per replication cycle is defined as
the probability of not reproducing the same base

µ := P (Cn+1 6= c | Cn = c) (1.1)

As the mutation rate is assumed to be uniform for all bases, a transition from a single base to a specific other base has
probability

P (Cn+1 = d | Cn = c) =
µ

|A| − 1
(1.2)

The self-replication probability is

P (Cn+1 = c | Cn = c) = 1−µ (1.3)

In order to set up the probabilities of mutation between haplotypes, we assume an independent and identical mutation
rates across loci. Let i, j ∈ {1, . . . , m} , m= |A|L , then we set for the mutation matrix Q=

�

qi j

�

qi j =
�

µ

|A| − 1

�d(i, j)

· (1−µ)L−d(i, j) > 0 (1.4)

where d(i, j) denotes the Hamming distance, i.e., the number of loci at which haplotypes i and j differ. Since qi j = q ji ,
the matrix Q is symmetric.

A. Non-uniform transition/transversion rate
In order to account for a non-uniform mutation rate between different bases, the mutation model from (1.4) needs to
be generalized. A mutation is called a transition when A ↔ G or C ↔ T during a replication cycle. The remaining
mutations are called transversions, i.e., all mutations from a purine to a pyrimidine. With α we denote the probability
of a transition, in line with the similar transition substitution parameter used in phylogenetic analysis. The probability
of a transversion mutation occurring is denoted with β . The ratio of α/β is the transition/transversion ratio and is
denoted by κ. These two mutation types can be combined to yield the overall mutation rate compatible with the
definition in (1.1):

µ= α+ 2β (1.5)

The intuition of this identity is that, for every base, there exists exactly one transition mutation and two transversion
mutations. The two mutation rates can now be expressed in terms of µ and κ as

α= µ ·
κ

κ+ 2
, β = µ ·

1
κ+ 2

(1.6)

For κ= 1, we find the specialization (1.2). To set up the mutation matrix for the full DNA sequence space AL , we use

qi j = α
nti(i, j) · βntv(i, j) · (1−µ)L−d(i, j) (1.7)

where nti(i, j) respectively ntv(i, j) denote the number of transitions respectively transversions going from haplotype i
to j and d(i, j) = nti(i, j)+ntv(i, j). It should be emphasized that, while α, β and κ bear resemblance to the parameters
of the popular Kimura-2-Parameter model (also known as K80 model), the parameters used in constructing phyloge-
netic trees and the mutation rates here cannot be used interchangeably. Substitution parameters implicitly account for
more effects, such as fixation and codon position effects, and cannot be equated with mutation rates (Kimura, 1980).
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2. The function g
We ask for the equilibrium distribution p ∈ ∆n−1 in the quasispecies model given a fitness landscape f ∈ F n−1. The
asterisk has been dropped from the distribution vector in (3) of the main article, as all further analysis will only be
concerned with the equilibrium value of p (t). By (3) in the main article, for φ = 1, the equilibrium distribution is

p= QT diag (f)p (2.1)

The equilibrium distribution p lies in the kernel of the matrix

B := QT diag (f)− In (2.2)

where In denotes the n× n identity matrix. Employing the Moore-Penrose pseudoinverse (Searle, 1982), any vector in
the kernel of B can be expressed as

a (f) :=
�

In −B+B
�

1n (2.3)

where B+ is the Moore-Penrose pseudoinverse of B and 1n denotes the n-dimensional vector of all-ones. We define the
scalar normalization constant λ (f) := 1T

n a (f) and set

g (f) :=
a (f)
λ (f)

= ker (B)∩∆n−1 (2.4)

such that g (f) ∈ ∆n−1. The function is well-defined, because
�

�ker (B)∩∆n−1
�

� = 1 for all f ∈ F n−1 due to the Perron-
Frobenius theorem (Bapat and Raghavan, 1997). It is not surjective, because the quasispecies equation has the
property that no haplotypes can go extinct, as mutations of any haplotype will always produce all other haplotypes with
non-zero probability. Thus, there exists a non-empty set of distributions, that include faces of ∆n−1, which cannot arise
in steady state from the quasispecies equation. We hence restrict g to its image g : F n−1 → image (g) =: Qn−1 ( ∆n−1,
such that g is surjective. We refer to Qn−1 as the quasispecies space, i.e., the set of all equilibrium distributions the
quasispecies equation can yield. In section B we have devised a two-haplotype model and derive lower and upper
bounds on the relative frequencies defining Q1 that are directly related to the mutation rate of the polymerase.

A. The bijections g and h are inverses of each other
Theorem 1. g is a bijection and h is its inverse.

Proof. Given that g is surjective, all we have to show is

h (g (f)) = f for all f ∈ F n−1 (2.5)

For proving (2.5), the following expansion is permissible, as a (f) is strictly positive due to the Perron-Frobenius
theorem

f= diag (a (f))−1 diag (a (f)) f (2.6)

Q−T QT = In as Q is regular due to it being a strictly diagonal dominant matrix

= diag (a (f))−1 Q−T QT diag (a (f)) f (2.7)

= diag (a (f))−1 Q−T QT diag (f)a (f) (2.8)

= diag (a (f))−1 Q−T
�

QT diag (f)a (f)− Ina (f) + a (f)
�

(2.9)

= diag (a (f))−1 Q−T (Ba (f) + a (f)) (2.10)

= diag (a (f))−1 Q−T
�

B
�

In −B+B
�

1n + a (f)
�

(2.11)

= diag (a (f))−1 Q−T
��

B−BB+B
�

1n + a (f)
�

(2.12)

We have B−BB+B= 0 by definition of the Moore-Penrose pseudoinverse, hence

f= diag (a (f))−1 Q−T a (f) (2.13)

= diag (a (f))−1 Q−T a (f)
λ (f)
λ (f)

(2.14)

= diag
�

a (f)
λ (f)

�−1

Q−T a (f)
λ (f)

(2.15)

= diag (g (f))−1 Q−T g (f) (2.16)

= h (g (f)) (2.17)
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B. Explicit description of Q1

Calculating the set Qn−1 is analytically not possible, but bounds can be formulated component-wise. Consider the
two-haplotype model, where we find for the first component of g (f), using MATLAB’s symbolic toolbox,

p1 =
2 f2q21 − f2 + 1

f1 − f1q11 + f2q21 − f1 f2q11 + f1 f2q21 + 1
(2.18)

Since elements in F n−1 only have one degree of freedom when n = 2, we can replace f2 with the help of the average
fitness constraint 1= p1 f1 + p2 f2 and substitute into (2.18) to obtain

�

1− p1 f1

1− p1

�

(2q21 − 1) + 1= p1

��

1− p1 f1

1− p1

�

(q21 − f1q11 + f1q21) + f1 − f1q11 + 1
�

(2.19)

In the limit as f1→ 0, this equation becomes

0= p2
1 + p1 (−q21 − 2) + 2q21 (2.20)

with roots p1 = q21 and p1 = 2. Only the first yields a valid solution, namely p = (q21, q22)
T . The procedure can be

repeated in an analogous fashion for f2 → 0 which then yields p = (q12, q11)
T . Thus, for the two-strains model, we

have the component-wise bounds for p ∈Q1

q21 < p1 < q11 (2.21)

q12 < p2 < q22 (2.22)
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3. Jacobian of h
In order to calculate the determinant of the Jacobian, the explicit form of the Jacobian needs to be known. Recall that

diag (p) f= p� f= f� p= diag (f)p (3.1)

where � denotes the Hadamard product (element-wise multiplication). To determine the Jacobian of

h (p) = diag(p)−1Q−T p, (3.2)

we write

p� h (p) = Q−T p, (3.3)

and perform implicit differentiation,

∂

∂ p
(p� h (p)) =

∂

∂ p

�

Q−T p
�

(3.4)

diag (h (p)) In + diag (p)
∂ h
∂ p
= Q−T (3.5)

∂ h
∂ p
= diag (p)−1 Q−T − diag (p)−1 diag (h (p)) (3.6)

∂ h
∂ p
= diag (p)−1 Q−T − diag (p)−1 diag

�

diag(p)−1Q−T p
�

(3.7)

The inner-most multiplication with diag(p)−1 in the last term of (3.7) can be factorized as it already is a diagonal
matrix, hence

J=
∂ h
∂ p
= diag (p)−1 Q−T − diag (p)−2 diag

�

Q−T p
�

(3.8)
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4. Functional form of posterior density function
In order to devise an efficient inference scheme, we introduce the logistic transformation (Aitchison, 1982) t : Rn−1→
∆n−1,

t i (y) =











exp (yi)
C (y)

(i = 1, . . . , n− 1)

1
C (y)

(i = n)
y ∈ Rn−1 (4.1)

where C (y) = 1+
∑n−1

j=1 y j , and its inverse t−1 :∆n−1→ Rn−1,

t−1
i (p) = log

pi

pn
(i = 1, . . . , n− 1) p ∈∆n−1 (4.2)

The transformations t and t−1 are illustrated on the left side of Figure 1 in the main article.
We derive the functional form of the posterior density function on sample space Rn−1, given data X. This requires

two transformations of the original probability density function, one from F n−1 to Qn−1 and then from Qn−1 to Rn−1.
For the first transformation,

pQ (p) = |det (J [h] (p))| · pF (h (p)) (4.3)

where pF (h (p)) = const. as we employ a uniform prior on F n−1

= |det (J [h] (p))| · const. (4.4)

where pQ (p) denotes the transformed prior on Qn−1 and J [h] (p) =
∂ h
∂ p

denotes the Jacobian of h with respect to p

evaluated at some p. We refer to section 3 for the derivation of the Jacobian

J [h] (p) = diag (p)−1 Q−T − diag (p)−2 diag
�

Q−T p
�

(4.5)

Second, we transform the previous prior on Qn−1 to Rn−1. For conciseness, we calculate p= t (y) beforehand

pR (y) = |det (J [t] (y))| · pQ (p= t (y)) (4.6)

=

� n∏
i=1

t i (y)

�

· pQ (p= t (y)) (4.7)

Substituting for pQ (p= t (y)) with |det (J [h] (p= t (y)))| · const. from (4.4) gives

=

� n∏
i=1

pi

�

· |det (J [h] (p= t (y)))| · const. (4.8)

=
�

�det
�

Q−T − diag (p)−1 diag
�

Q−T p
���

� · const. (4.9)

= d (y) · const. (4.10)

where we denote the absolute value of the determinant as d (y) :=
�

�det
�

Q−T − diag (p)−1 diag
�

Q−T p
���

�. Thus, the
posterior has the functional form

pR (y | X) =
P (X | p) · d (y) · const.

P (X)
(4.11)

As the normalization constant P (X) cannot be determined, we drop it and write for the posterior density function

pR (y | X) = P (X | p) · d (y) = d (y) ·

� n∏
i=1

pX i
i

�

· const. (4.12)

For reasons of numerical stability, we use the logarithm

log pR (y | X) = log d (y) +
n∑

i=1

X i log pi + const. (4.13)
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5. Simulations
To highlight the numerical and parameter robustness of our model, we have conducted multiple simulations. For the
sake of demonstration, unless stated otherwise, we have set κ= 1.

A. Numerical precision simulations
A crucial point for numerical stability lies in calculating the determinant in d (y) in (4.13). As a sanity check, we ran
the sampling procedure with a total of 0 reads for two haplotypes, which is equivalent to sampling from the prior.
A correct sampling procedure will yield a flat distribution of the random variable f1 − f2, where f1 is the fitness of
haplotype 1 and f2 is the fitness of haplotype 2. The results are depicted in Figure S1.
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Figure S1. Prior fitness distributions for the two-haplotype model. Each column indicates a sampling procedure run
with a specific precision and each row represents a haplotype constellation where haplotypes were sepa-
rated by a different Hamming distance dH .

For this simulation, the first haplotype was set to AAA and the second was set to AAT, ATT, and TTT for Hamming
distances dH = 1, 2, and 3, respectively. All constellations were run with 200 · 106 MCMC trials from the prior and a
thinning interval of 1000, yielding 200 000 samples after each procedure.

The first column in Figure S1 depicts samples from the standard sampler, where floating point was performed with
ordinary x87 floating point (about 18 digits of decimal precision). The second column depicts samples for 128-bit
quadruple precision which was performed with GCC’s __float128 type (about 34 digits of decimal precision). The
last column shows samples for running our sampling procedure with GMP’s arbitrary precision type mpf_t (set to
around 100 digits of decimal precision). Correct samplers should show a uniform distribution, as there is no fitness
difference when sampling from the prior.

When the haplotype graph Gk is determined by k = 2, that is, the maximum number of mutations per step required
for a haplotype to mutate into any other haplotype, then standard precision results cannot be trusted anymore. This is
due to excessive floating-point rounding and absorption issues and motivates the requirement of k < 2 introduced in
section Haplotype space and mutation probabilities of the main article. While we provide our sampler with the option
of easily enabling quadruple and arbitrary precision floating point arithmetic, the performance penalties experienced
by these types makes their use viable only for small haplotype sets H.
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B. Unobserved haplotypes simulations
In order to verify that the procedure detailed in the section Haplotype space and mutation probabilities of the main
article allows for inference on data sets where the graph of observed haplotypes G1 is not strongly connected, we
conducted further simulations. We employed the same two observed haplotypes with the same varying dH as in
the previous section, that is, one observed haplotype is AAA and the second observed haplotype is AAT, ATT or TTT
depending on dH . In addition, we assumed that each haplotype was observed with exactly one read. From the
symmetry of this setting and the observations, the differences of fitness values between the observed haplotypes
should be symmetrical and not credibly different from 0. To circumvent the previously apparent numerical issues, we
take the union of the haplotypes of the smaller dH and the observed second haplotype for H, such that the resulting
G1 is strongly connected. Due to the increased number of unobserved haplotypes in H now compared to the H in the
previous section, the efficiency of the sampler is reduced, owing to an increased number of proposals not being an
element of Qn−1. We run the sampling procedure with 100 ·106 MCMC trials and a thinning number of 100, the results
of which are depicted in Figure S2.
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Figure S2. Posterior fitness difference distributions for the two-haplotype model with unobserved haplotypes. Each
column indicates a sampling procedure run with a specific precision and each row represents a haplotype
constellation where observed haplotypes were separated by a different Hamming distance dH . As we are
dealing with the posterior, the fitness differences are not uniformly distributed anymore. Due to the non-
linear transformation involved in transforming probability distributions between different spaces, the tails
of the posterior distribution of the fitness differences of the two observed haplotypes are heavy-tailed,
hence the y-axis representing logarithmic counts.

To further assess the stability of the procedure of including unobserved haplotypes into H, we tested whether for the
same dH , the posterior fitness samples depicted in Figure S2 come from the same distribution, i.e., whether there
exists a difference between extended precision and the other numerical precision modes. To this end, we tested the
difference with the Wilcoxon rank sum test, with results shown in Table S1.

As none of the differences in distributions between numerical precision modes is statistically significant at the 5%
level, this demonstrates the numerical robustness of the method when including unobserved haplotypes. Lastly, as a
sanity check, the 95% credibility intervals of ∆ f were determined for all precision modes (Table S2).

All of the credibility intervals include 0 as expected, providing a further indication that no spurious fitness differ-
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Table S1. Testing for differences between precision modes for the last 50000 samples of each run. Here
∆ f extended precision for instance denotes the random variable fAAA − fAAT when dH = 1 and extended preci-
sion was employed, i.e., the same samples as shown in Figure S2 in the top-left histogram.

dH ∆ f extended precision −∆ f quadruple precision ∆ f extended precision −∆ f arbitrary precision
p-Value p-Value

1 0.3606 0.2326
2 0.1603 0.4844
3 0.6719 0.7782

Table S2. Determining 95% credibility intervals for fitness differences. All intervals include 0, such that no difference
in fitness between observed haplotypes can be called.

dH ∆ f extended precision ∆ f quadruple precision ∆ f arbitrary precision

1 [−0.614,0.625] [−0.636,0.547] [−0.600, 0.596]
2 [−0.563,0.537] [−0.573,0.506] [−0.558, 0.507]
3 [−0.548,0.524] [−0.528,0.545] [−0.530, 0.551]

ences are called due to numerical errors.
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C. Upper bound on deviation from equilibrium
To give an upper bound on how close the viral population has to be to the equilibrium, we performed dynamical
simulations on the quasispecies equation. To this end, we used the same LK parameters as in the section LK fitness
landscape simulations of the main article. The random fitness landscapes were rescaled such that the average arithmetic
sum of the fitness landscape is 1. This was done to bring the average generation time to approximately one unit of
time. We randomly selected one haplotype as initial starting point and simulated the system up to 104 time units using
MATLAB. We performed the same rank-based analysis as in the simulation studies section of the main article, namely
studying the goodness of recovering the ranks of the fitness landscape, using (6) of the main article and the ranks
of the frequency vector p. We analyzed the goodness of recovering the ranks as a function of stepping back in time,
employing a total number of N = 10 000 simulation points. Results for L = 3 are shown in Figure S3.
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Figure S3. Accuracy of the predicted fitness landscape τKendall as a function of the time t from equilibrium. We set

L = 3 and analyzed the cases for K = 1, 2. The upper row shows the ability of the two methods to recover
the fitness ranks. The bottom row illustrates the differences between the two methods. The thick solid line
indicates the average distance between both methods as a function of time. For sake of clarity only 500
points are shown.

As can be seen, the QuasiFit-based estimator is clearly superior up to about 500 time units and degrades beyond.
Nonetheless, even very far from equilibrium, the difference between both methods still marginally favors the QuasiFit-
based estimator. Of these N = 10 000 simulations, only 39 respectively 2 resulted in a better ranking of the true fitness
landscape for the naive estimator for K = 1 respectively K = 2. As such, it can be concluded that the QuasiFit-based
estimator is at least as good as the current standard of practice of taking the counts as estimator for the ranks of the
fitness landscape, even when equilibrium has not been reached.
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D. Deviations from transition/transversion ratio
To assess the violations of the assumed transition/transversion ratio, we conducted simulations by varying κ in (1.7).
In detail, we increased κ from 1 (i.e., the uniform mutation model) up to 10 with N = 10000. For each simulation,
we generated random LK fitness landscapes using the same parameters as in the previous section, calculated the
quasispecies distribution using 1 < κ < 10 and assumed the standard HIV mutation rate of µ = 3 · 10−5. We then
employed the standard uniform mutation matrix Q from (1.4) to simulate inference results for the standard QuasiFit
case (Figure S4).
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Figure S4. Accuracy of the predicted fitness landscape τKendall as a function of the actual κ. We set L = 3 and analyzed

the cases for K = 1,2. The upper row shows the ability of the two methods to recover the fitness ranks. The
bottom row illustrates the differences between the two methods. The thick solid line indicates the average
distance between both methods as a function of the actual κ. For sake of clarity only 500 points are shown.

Our model is robust to at least some variation in κ. One study estimated κ to lie between 3.1 and 5.5 (Abram et al.,
2010). In this interval, the QuasiFit estimator is still better than calling fitness ranks by frequencies. In order to give
the user a maximum of flexibility in inference, QuasiFit can also employ the mutation matrix from (1.7) to avoid
possibly spurious results due to a misspecified model.
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E. Epistastic vs. additive effects
In order to further understand how well the QuasiFit model can predict the ranks of a fitness landscape with varying
levels of epistasis, we rewrite the fitness landscape as a full linear interaction model,

f (a1, . . . , aL) =
L∑

i=1

βi,ai
+

L−1∑
i=1

L∑
j=i+1

βi,ai ; j,a j
+

L−2∑
i=1

L−1∑
j=i+1

L∑
k= j+1

βi,ai ; j,a j ;k,ak
+ . . . (5.1)

where βi,ai
denote the additive effects of base a at locus i, βi,ai ; j,a j

denote the pair-wise epistatic effects of base a at locus
i and base b at locus j and so on. For the simulations we continued to employ the log-normal distribution as in section
LK fitness landscape simulations of the main article. Additionally, we parametrized the log-normal distribution of the
epistatic effects βi,ai ;(·) such that median

�

βi,ai ;(·)/βi,ai

�

= C . Hence, the epistatic and additive effects are identically
distributed when C = 1. We refer to C as the strength of epistasis relative to the additive effects. In order for the
results of this interaction model to be comparable to the results of the LK simulations, for a given K, we only included
effects up to order K+1, e.g., if we set K = 1 we only included pair-wise epistatic effects βi,a; j,b and set all higher-order
effects to 0.

For the simulations, we proceeded in a similar fashion as in the previous section, instead for every random fitness
landscape we now generated a multinomial sample with 100000 reads possessing a fitness MLE. Generating samples
possessing an f̂ was done solely to aid inference, as f̂ can then be used as a proxy for the full Bayesian estimator. In
total we simulated N = 10000 fitness landscapes with C in the interval [3 · 10−2, 3]. The results of the QuasiFit fitness
rank estimator versus the naively estimated ranks are depicted in Figure S5.
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Figure S5. Accuracy of the predicted fitness landscape τKendall as a function of the strength of epistatic relative to

additive effects C . We set L = 3 and analyzed the cases for K = 1,2. The upper row shows the ability of
the two methods to recover the fitness ranks. The bottom row illustrates the differences between the two
methods. The thick solid line indicates the average distance between both methods as a function of the
epistatic strength C . For sake of clarity only 500 points are shown.

Notice that our estimator starts to become significantly better at recovering the ranks of the fitness landscape once
epistatic effects are approximately on the order of 10% of the additive effects. This detection limit can likely be
decreased with increasing coverage of the reads, as the intrinsic sampling variance of the inferred fitness estimator
diminishes. Assis (2014) has shown in a study of RNA secondary structure in HIV-1 that the total epistatic contribution
to the fitness landscape of a locus can make up up to 50%, which is considerably larger than our lower detection limit.
In addition, da Silva et al. (2010) have found epistasis in HIV-1 to be important and common, where the overall
epistatic contribution was orders of magnitude higher than the additive contribution in several cases.
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6. Convergence diagnostics
A. Gelman and Rubin diagnostic
In order to assess whether the MCMC procedure converged to its presumed stationary distribution, we analyzed the
scale reduction factor for patient 1. To this end, we ran another three independent MCMC chains beside the chain on
which the results reported in the main text are based. The scale factor trajectories are plotted in Figure S6.
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Figure S6. The Gelman-Rubin scale reduction factor. The plot in (a) shows the shrink factor vs. iteration number for
the first 5% of samples. The plot in (b) shows the same shrink factor for all trial samples.

Notice how after trial count 30 000, the chains have a vanishing scale factor below 1.01, strongly suggesting conver-
gence.

B. Autocorrelation
We determined the necessary thinning interval from autocorrelation plots (Figure S7) of one sub-chain of the MCMC
procedure in the main article for patient 1.
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Figure S7. Autocorrelation plots for different thinning intervals. The first plot (a) indicates that even with a thinning
interval of 50, significant autocorrelation remains. Plot (b) highlights that thinning interval 1150 achieves
negligible autocorrelation such that samples can now be regarded as approximately independent.

At around lag 23 the autocorrelation drops below the statistical significance level. This leads to a total thinning interval
of 23 · 50= 1150 for yielding approximately independent samples from the posterior distribution.
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C. Testing for differences in distributions
With thinning intervals of 1150 we proceeded to test samples from 10%–50% of trial samples with samples from
60%–100% of trial samples. Under the null hypothesis, these samples should have equal location with respect to each
other if they originate from the stationary distribution. To test this null hypothesis, we employed the Wilcoxon rank
sum test for all of the four independent runs in Table S3.

Table S3. Testing for differences between 40% of samples in the first half and 40% of samples in the latter half.
Runs p-Value

1 0.3232
2 0.0751
3 0.7854
4 0.4719

None of the p-values are significant, hence we retain the null hypothesis that samples from 10%–100% originate from
the same (stationary) posterior distribution.
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7. Patient haplotypes
This section serves to collect the DNA sequences of haplotypes inferred from the deep sequencing data. For sake of
conciseness we denote haplotypes by dropping loci with only one base and subscripting alleles at their respective loci.

Table S4. Table of haplotypes in Patient 1.

Hap. No. Haplotype
1 A9A51A74A120A168A171A183A191
2 A9A51A74A120A168A171A183C191
3 A9A51A74A120A168A171G183A191
4 A9A51A74A120A168C171A183A191
5 A9A51A74A120A168C171A183C191
6 A9A51A74A120A168C171G183A191
7 A9A51A74A120G168A171A183A191
8 A9A51A74A120G168A171G183A191
9 A9A51A74G120A168A171A183A191

10 A9A51A74G120A168A171A183C191
11 A9A51A74G120A168A171G183A191
12 A9A51A74G120A168C171A183A191
13 A9A51A74G120A168C171A183C191
14 A9A51A74G120A168C171G183A191
15 A9A51A74G120G168A171A183A191
16 A9A51A74G120G168A171G183A191
17 A9A51G74A120A168A171A183A191
18 A9A51G74A120A168A171A183C191
19 A9A51G74A120A168A171G183A191
20 A9A51G74A120A168C171A183A191
21 A9A51G74A120A168C171A183C191
22 A9A51G74A120A168C171G183A191
23 A9A51G74A120G168A171A183A191
24 A9A51G74A120G168A171G183A191
25 A9A51G74G120A168A171A183A191
26 A9A51G74G120A168A171A183C191
27 A9A51G74G120A168A171G183A191
28 A9A51G74G120A168C171A183A191
29 A9A51G74G120A168C171A183C191
30 A9A51G74G120A168C171G183A191
31 A9A51G74G120G168A171G183A191
32 A9G51A74A120A168A171A183A191
33 A9G51A74A120A168A171A183C191
34 A9G51A74A120A168A171G183A191
35 A9G51A74A120A168C171A183A191
36 A9G51A74A120A168C171A183C191
37 A9G51A74A120A168C171G183A191
38 A9G51A74A120G168A171A183A191
39 A9G51A74A120G168A171G183A191
40 A9G51A74G120A168A171A183A191
41 A9G51A74G120A168A171A183C191
42 A9G51A74G120A168A171G183A191
43 A9G51A74G120A168C171A183A191

Hap. No. Haplotype
44 A9G51A74G120A168C171A183C191
45 A9G51A74G120G168A171A183A191
46 A9G51A74G120G168A171G183A191
47 A9G51G74A120A168A171A183A191
48 A9G51G74A120A168A171A183C191
49 A9G51G74A120A168A171G183A191
50 A9G51G74A120A168C171A183A191
51 A9G51G74A120A168C171A183C191
52 A9G51G74A120A168C171G183A191
53 A9G51G74A120G168A171A183A191
54 A9G51G74A120G168A171G183A191
55 A9G51G74G120A168A171A183A191
56 A9G51G74G120A168A171G183A191
57 A9G51G74G120A168C171A183A191
58 A9G51G74G120G168A171G183A191
59 G9A51A74A120A168A171A183A191
60 G9A51A74A120A168A171A183C191
61 G9A51A74A120A168A171G183A191
62 G9A51A74A120A168C171A183A191
63 G9A51A74A120A168C171A183C191
64 G9A51A74A120A168C171G183A191
65 G9A51A74A120G168A171A183A191
66 G9A51A74A120G168A171G183A191
67 G9A51A74G120A168A171A183A191
68 G9A51A74G120A168A171A183C191
69 G9A51A74G120A168C171A183A191
70 G9A51A74G120G168A171G183A191
71 G9A51G74A120A168A171A183A191
72 G9A51G74A120A168A171A183C191
73 G9A51G74A120A168A171G183A191
74 G9A51G74A120A168C171A183A191
75 G9A51G74A120G168A171G183A191
76 G9A51G74G120A168A171A183A191
77 G9A51G74G120A168C171A183A191
78 G9A51G74G120G168A171G183A191
79 G9G51A74A120A168A171A183A191
80 G9G51A74A120A168A171A183C191
81 G9G51A74A120A168C171A183A191
82 G9G51A74G120A168A171A183A191
83 G9G51A74G120G168A171G183A191
84 G9G51G74A120A168A171A183A191
85 G9G51G74A120A168C171A183A191
86 G9G51G74G120A168A171A183A191

The haplotypes of Patient 1 respectively Patient 2 are noted in Table S4 respectively Table S5. The graphs of the
patients’ fitness landscapes are shown in Figure 9 of the main article.
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Table S5. Table of haplotypes in Patient 2.

Hap. No. Haplotype
1 A6A33A72A74A108G143G144T192
2 A6A33A72A74G108A143G144T192
3 A6A33A72A74G108G143A144C192
4 A6A33A72A74G108G143G144C192
5 A6A33A72A74G108G143G144T192
6 A6A33A72G74A108A143G144G192
7 A6A33A72G74A108A143G144T192
8 A6A33A72G74A108G143A144C192
9 A6A33A72G74A108G143A144T192

10 A6A33A72G74A108G143G144C192
11 A6A33A72G74A108G143G144G192
12 A6A33A72G74A108G143G144T192
13 A6A33A72G74G108A143A144T192
14 A6A33A72G74G108A143G144C192
15 A6A33A72G74G108A143G144G192
16 A6A33A72G74G108A143G144T192
17 A6A33A72G74G108G143A144C192
18 A6A33A72G74G108G143A144G192
19 A6A33A72G74G108G143A144T192
20 A6A33A72G74G108G143G144C192
21 A6A33A72G74G108G143G144G192
22 A6A33A72G74G108G143G144T192
23 A6A33G72A74G108G143G144T192
24 A6A33G72G74A108G143A144T192
25 A6A33G72G74A108G143G144C192
26 A6A33G72G74A108G143G144T192
27 A6A33G72G74G108A143A144T192
28 A6A33G72G74G108A143G144C192
29 A6A33G72G74G108A143G144G192
30 A6A33G72G74G108A143G144T192
31 A6A33G72G74G108G143A144T192
32 A6A33G72G74G108G143G144C192
33 A6A33G72G74G108G143G144G192
34 A6A33G72G74G108G143G144T192
35 A6G33A72A74G108G143G144G192
36 A6G33A72A74G108G143G144T192
37 A6G33A72G74A108G143G144T192
38 A6G33A72G74G108A143G144C192
39 A6G33A72G74G108A143G144G192
40 A6G33A72G74G108G143A144G192
41 A6G33A72G74G108G143A144T192
42 A6G33A72G74G108G143G144C192
43 A6G33A72G74G108G143G144G192
44 A6G33A72G74G108G143G144T192
45 A6G33G72G74A108G143G144T192
46 A6G33G72G74G108G143G144G192
47 A6G33G72G74G108G143G144T192
48 G6A33A72A74A108A143G144T192
49 G6A33A72A74A108G143A144T192
50 G6A33A72A74A108G143G144C192
51 G6A33A72A74A108G143G144G192
52 G6A33A72A74A108G143G144T192
53 G6A33A72A74G108A143A144T192
54 G6A33A72A74G108A143G144T192
55 G6A33A72A74G108G143A144T192
56 G6A33A72A74G108G143G144C192
57 G6A33A72A74G108G143G144G192
58 G6A33A72A74G108G143G144T192
59 G6A33A72G74A108A143A144C192
60 G6A33A72G74A108A143A144T192
61 G6A33A72G74A108A143G144C192
62 G6A33A72G74A108A143G144G192

Hap. No. Haplotype
63 G6A33A72G74A108A143G144T192
64 G6A33A72G74A108G143A144C192
65 G6A33A72G74A108G143A144G192
66 G6A33A72G74A108G143A144T192
67 G6A33A72G74A108G143G144C192
68 G6A33A72G74A108G143G144G192
69 G6A33A72G74A108G143G144T192
70 G6A33A72G74G108A143A144C192
71 G6A33A72G74G108A143A144G192
72 G6A33A72G74G108A143A144T192
73 G6A33A72G74G108A143G144C192
74 G6A33A72G74G108A143G144G192
75 G6A33A72G74G108A143G144T192
76 G6A33A72G74G108G143A144C192
77 G6A33A72G74G108G143A144G192
78 G6A33A72G74G108G143A144T192
79 G6A33A72G74G108G143G144C192
80 G6A33A72G74G108G143G144G192
81 G6A33A72G74G108G143G144T192
82 G6A33G72A74A108G143G144T192
83 G6A33G72A74G108G143G144C192
84 G6A33G72A74G108G143G144T192
85 G6A33G72G74A108A143G144T192
86 G6A33G72G74A108G143A144G192
87 G6A33G72G74A108G143A144T192
88 G6A33G72G74A108G143G144C192
89 G6A33G72G74A108G143G144G192
90 G6A33G72G74A108G143G144T192
91 G6A33G72G74G108A143A144T192
92 G6A33G72G74G108A143G144C192
93 G6A33G72G74G108A143G144T192
94 G6A33G72G74G108G143A144C192
95 G6A33G72G74G108G143A144G192
96 G6A33G72G74G108G143A144T192
97 G6A33G72G74G108G143G144C192
98 G6A33G72G74G108G143G144G192
99 G6A33G72G74G108G143G144T192

100 G6G33A72A74G108G143G144T192
101 G6G33A72G74A108A143G144T192
102 G6G33A72G74A108G143A144C192
103 G6G33A72G74A108G143A144T192
104 G6G33A72G74A108G143G144C192
105 G6G33A72G74A108G143G144T192
106 G6G33A72G74G108A143A144C192
107 G6G33A72G74G108A143A144T192
108 G6G33A72G74G108A143G144C192
109 G6G33A72G74G108A143G144G192
110 G6G33A72G74G108A143G144T192
111 G6G33A72G74G108G143A144G192
112 G6G33A72G74G108G143A144T192
113 G6G33A72G74G108G143G144C192
114 G6G33A72G74G108G143G144G192
115 G6G33A72G74G108G143G144T192
116 G6G33G72G74A108G143G144C192
117 G6G33G72G74A108G143G144T192
118 G6G33G72G74G108A143G144T192
119 G6G33G72G74G108G143A144C192
120 G6G33G72G74G108G143A144T192
121 G6G33G72G74G108G143G144C192
122 G6G33G72G74G108G143G144G192
123 G6G33G72G74G108G143G144T192
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8. Codon usage effects
In the main article in section Fitness landscapes of clinical p7 quasispecies we analyzed the bi-allelic two loci peptide
space for illustration purposes and as a proof-of-concept of our developed method. Here we show the results of
looking at fitness differences of codons at synonymous loci. To this end, we iterated over all amino acid residues and
analyzed those positions where heterogeneity exists in DNA sequences but not in the translated peptides. In order
to analyze codon usage effects, we marginalized out the effects of all other loci, by defining equivalence classes for
the synonymous codons, similar to the approach used for defining equivalence classes for peptides in section Fitness
landscapes of clinical p7 quasispecies of the main article. We have analyzed synonymous codons for patient 1 and
patient 2 and have summarized the results in Table S6 respectively Table S7.

Table S6. Codon usage in patient 1. The wild-type is indicated by the letters wt and defined as the major allele,
whereas the mutant allele is (mt) defined to be the minor allele. The variable p̄ denotes the posterior
average frequency of the respective codon.

Amino acid Amino acid wt mt
position Codon p̄wt Codon p̄mt

3 Ala GCA 85.5% GCG 14.5%
17 Arg AGA 87.8% AGG 12.2%
40 Arg AGA 92.1% AGG 7.9%
56 Glu GAA 82.5% GAG 17.5%
57 Gly GGA 74.6% GGC 25.4%
61 Lys AAA 80.0% AAG 20.0%

Table S7. Codon usage in patient 2. The wild-type is indicated by the letters wt and defined as the major allele,
whereas the mutant allele (mt1,2) is defined to be the first and (if applicable) second minor allele. The
variable p̄ denotes the posterior average frequency of the respective codon. Notice the tri-allelic locus at
amino acid position 64.

Amino acid Amino acid wt mt1 mt2
position Codon p̄wt Codon p̄mt1

Codon p̄mt2

2 Glu GAG 88.4% GAA 11.6%
11 Ala GCA 94.5% GCG 5.5%
24 Arg AGA 91.9% AGG 8.1%
36 Gly GGG 87.8% GGA 12.2%
64 Thr ACT 88.4% ACC 8.5% ACG 3.1%

All codons could be credibly inferred to differ in their fitness, with the wild-type codon fitter than average and all
mutant codons less fit than average. Given the large frequencies of the wild-type alleles, this is not unexpected. Codon
usage is a known cause for fitness differences in vivo (Ermolaeva et al., 2001).
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9. Runtime evaluation
In order to better understand when the asymptotic complexity of O(n3) is reached, we ran our sampler on artificial
data. To this end, we reduced the alphabet to a binary set A = {A, G} and set the length of the genomic space under
study to L = {1, . . . , 9}, such that the total number of haplotypes will be n = 2L . All simulations were performed
with Ntrials = 100 per chain and a total of 512 chains, thus having simulated a total of 51 200 MCMC trials. For each
simulation, we recorded the time required for simulating the MCMC trials, divided the total runtime by 51200 in order
to yield the average runtime per MCMC trial. All simulations were conducted on an Intel Xeon E5-2697 CPU with one
simulation thread. In order to estimate the transition to the asymptotic regime, we estimate two models of runtime

t(n) = a+ b · n+ c · n2 + d · n3 (9.1)

and the asymptotic model

t(n) = d · n3 (9.2)

The full model (9.1) was fitted by employing non-linear least squares (NLS) on the log-transformed data, while the
latter (9.2) was fitted by performing NLS on just the last three log-transformed data points. The fitted models are
depicted in Figure S8 and confirm that beyond n ≈ 64 the asymptotic regime is practically reached. In this regime
the calculation of the matrix determinant in (4.13) is the rate-determining step, whereas below this limit non-cubic
memory allocation and function overhead contribute a sizable portion to the computational runtime.
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Figure S8. Graph of the per MCMC trial runtime t versus the number of haplotypes n. The red curve represents the
best fit of (9.1) whereas the green model represents the asymptotic complexity (9.2).
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