Supplementary Information (SI) to accompany

Control of microtubule trajectory within an electric field

by altering surface charge density

Naoto Isozaki, Suguru Ando, Tasuku Nakahara, Hirofumi Shintaku,

Hidetoshi Kotera, Edgar Meyhöfer, and Ryuji Yokokawa*

*Ryuji Yokokawa Department of Micro Engineering Kyoto University Kyotodaigaku-katsura, Nishikyo-ku Kyoto 615-8540, Japan Tel/Fax: +81-75-383-3682 Email: ryuji@me.kyoto-u.ac.jp

Contents

1.	Supplementary figures	3
2.	Supplementary methods	6
3.	Supplementary movies	8
Refe	erences	9

1. Supplementary figures

Figure S1. Effect of syringe shearing on B-seed lengths. Fluorescence images of B-R-seeds (**a**) before and (**b**) after syringe shearing. Scale bar = 10 μ m. Length distribution (**c**) before (*n* = 801) and (**d**) after shearing (*n* = 726). Measured relative frequency (black bars) and fitted log normal distribution (red lines). Bin size = 0.2 μ m.

Double-sided tape

Figure S2. A FC with reservoirs. Channel width, length, and height are 3.5 mm, 15 mm, and 50 μ m, respectively. The FC volume is ~2.6 μ l. Scale bar = 5 mm.

Figure S3. Evaluation of *A* values for minus end-labeled MT. *A* values measured for (a) MB-R-MT (n = 36) and 20-bp DNA(G)-R-MT (n = 16) in FC-20 (*p < 0.01, t test); and (b) MB-R-MT (n = 37) and 50-bp DNA(G)-R-MT (n = 20) in FC-50 (*p < 0.01, t test). (c) Ratios of mean *A* value of DNA-labeled MB-MT to that of MB-R-MT.

2. Supplementary methods

The derivation of Debye length in a FC and effective charges of tubulin dimers and labeled DNA molecules is described. At pH 6.8, the BRB80 buffer solution contained 38 mM PIPES⁻, 42 mM PIPES²⁻, 122 mM K⁺, 1 mM Mg²⁺, and 2 mM Cl⁻, given that the pK_{a1} and pK_{a2} of PIPES are < 3.0 and 6.76, respectively, at 25°C. Debye length λ_D was expressed as

$$\lambda_{\rm D} = \sqrt{\frac{\varepsilon k_{\rm B} T}{2N_{\rm A} e^2 \sum_i c_i z_i^2}} \tag{S1}$$

where $k_{\rm B}$ is the Boltzmann constant, T is temperature, $N_{\rm A}$ is the Avogadro constant, and e is the elementary charge,¹ and was calculated as a summation over all ion species *i* with valence z_i and molar concentration c_i . Using the dielectric constant of water ($\varepsilon = 6.93 \times 10^{-10} \text{ C V}^{-1} \text{ m}^{-1}$) for BRB80 buffer solution and constants $k_{\text{B}} = 1.38$ × 10⁻²³ J K⁻¹, $N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$, $e = 1.60 \times 10^{-19}$ C, and T = 298 K, $\lambda_{\rm D}$ was calculated as 0.74 nm from equation S1. As discussed in the main text, λ_D provides zeta potential ζ and surface charge density σ of seed MTs from equations 1 and 2 (Table 1). When there is no DNA molecule labeled on a tubulin dimer, an effective charge of 10 e⁻ and 9.7 e⁻ per bare tubulin dimer is calculated with σ for R-seed and G-seed, respectively, assuming a surface area of 50 nm².² Surface areas of 20- and 50bp dsDNAs were calculated as 47 and 117 nm², respectively, assuming that DNA has a cylindrical structure with a diameter and length of 2.2 nm and 0.34 nm per bp, respectively.³ Given that SA binds to 80% of the biotin on MTs,⁴ 200% of the SA was bound to biotinylated DNA⁵ and 3.2 biotin molecules were bound to a tubulin dimer (for a biotinylation ratio of 320%), and the number of DNA molecules conjugated to a tubulin dimer was calculated as 5.1. The total surface area of 20-bp DNA(G)-R-seed was the sum of the DNA and tubulin dimer surfaces ($47 \times 5.1 \text{ nm}^2$ and 50 nm²,

respectively). Thus, the total effective charge of 20-bp DNA(G)-R-seed per tubulin dimer was calculated as 73.7 e⁻ by multiplying σ (= 0.25 e⁻ nm⁻², Table 1) by the total surface area (47 × 5.1 + 50 nm²). Since the effective charge of a bare tubulin dimer was 10 e⁻, the total effective charge of 20-bp DNA on a tubulin dimer was 63.7 e⁻. It was divided by the number of DNA molecules on a tubulin dimer (5.1) to obtain the net effective charge per single 20-bp DNA of 12.4 e⁻ (0.62 e⁻ per bp). The corresponding value per single 50-bp DNA was also calculated as 34.5 e⁻ (0.69 e⁻ per bp). The effective charge for 50-bp DNA was constant regardless of their tagged-fluorophores.

3. Supplementary movies

Movie S1. Gliding of 20-bp DNA(G)-R-MTs and MB-R-MTs under an average electric field of $E = 7 \text{ kV m}^{-1}$ (from right to left) in FC-20 (40× actual speed). Scale bar = 10 µm.

Movie S2. Gliding of 50-bp DNA(G)-R-MTs and MB-R-MTs under an average electric field of $E = 7 \text{ kV m}^{-1}$ (from right to left) in FC-50 (40× actual speed). Scale bar = 10 µm.

Movie S3. Gliding of 50-bp DNA(R)-G-MTs, 20-bp DNA(G)-R-MTs, and MB-R-MTs under an average electric field of $E = 7 \text{ kV m}^{-1}$ (from right to left) in FC-mix (40× actual speed). Scale bar = 10 µm.

References

1. Russel, W. B., Saville, D. A. & Schowalter, W. R. *Colloidal dispersions*. (Cambridge university press, New York, 1992).

2. van den Heuvel, M. G., de Graaff, M. P. & Dekker, C. Molecular sorting by electrical steering of microtubules in kinesin-coated channels. *Science* **312**, 910-914 (2006).

3. van Dorp, S., Keyser, U. F., Dekker, N. H., Dekker, C. & Lemay, S. G. Origin of the electrophoretic force on DNA in solid-state nanopores. *Nat. Phys.* **5**, 347-351 (2009).

4. Dinu, C. Z. *et al.* Parallel manipulation of bifunctional DNA molecules on structured surfaces using kinesin-driven microtubules. *Small* **2**, 1090-1098 (2006).

5. Caruso, F., Rodda, E., Furlong, D. N., Niikura, K. & Okahata, Y. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic Acid sensor development. *Anal. Chem.* **69**, 2043-2049 (1997).