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APPENDIX A: ADDITIONAL PROOFS

A.1. Proof of Theorem 3. This proof is motivated by Pollard (1990).
In the proof we use C > 0 to denote a generic positive constant.

Let θ = V−1
n (β1−β∗

1), then β1 = β∗
1+Vnθ. Letting Gn(θ) = Ln(β1,0)−

Ln(β
∗
1,0), we have that

Gn(θ) = ∥ρτ (ε− Znθ)∥1 − ∥ρτ (ε)∥1 + nλn

(
∥d0 ◦

(
β∗
1 +Vnθ

)
∥1 − ∥d0 ◦ β∗

1∥1
)
,

(A.1)

where we have used the shorthand notation that ∥ρτ (u)∥1 =
∑n

i=1 ρτ (ui)

for any vector u = (u1, · · · , un)T . Since Ln(β1,0) is minimized at β1 = β̂
o

1,

it follows that Gn(θ) is minimized at θ̂n = V−1
n (β̂

o

1 − β∗
1). We consider θ

over the convex open set

B0(n) = {θ ∈ Rs : ∥θ∥2 < c6
√
s},

with some constant c6 > 0 independent of s.
The idea of the proof is to approximate the stochastic function Gn(θ) by

a quadratic function, whose minimizer is shown to possess the asymptotic
normality. Since Gn(θ) and the quadratic approximation are close, the min-
imizer of Gn(θ) enjoys the same asymptotic normality. Now, we proceed to
prove Theorem 3.

Decompose Gn(θ) into its mean and centralized stochastic component:

(A.2) Gn(θ) = Qn(θ) + Tn(θ),

where Qn(θ) = E[Gn(θ)] and

Tn(θ) = ∥ρτ (ε− Znθ)∥1 − ∥ρτ (ε)∥1 − E
[
∥ρτ (ε− Znθ)∥1 − ∥ρτ (ε)∥1

]
.

(A.3)
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2 FAN ET AL.

We first deal with the mean componentQn(θ). Since ∥θ∥2 < c6
√
s over the

set B0(n), it follows from the Cauchy-Schwarz inequality and the assumption
of the theorem that

∥H1/2Znθ∥∞ ≤ ∥θ∥2max
i

∥H1/2Zni∥2 = o
(
s−3(log s)−1

)
.

Then, since f ′′(u) is bounded in a small neighborhood of 0, by using a similar
argument as equation (7.3) of the main paper and noting that

∑n
i=1 fi(0)|Z

T
niθ|2 =

θT
(
ZT
nHZn

)
θ = ∥θ∥22 we can show that

E
[
∥ρτ (ε− Znθ)∥1 − ∥ρτ (ε)∥1

]
(A.4)

= ∥θ∥22 +
1

2

n∑
i=1

f ′
i(0)|ZT

n,iθ|3 + o
( n∑
i=1

f ′
i(0)|ZT

n,iθ|3
)
.

Furthermore, since
∑n

i=1 fi(0)|Z
T
niθ|2 = ∥θ∥22 < c26s, it follows that

n∑
i=1

f ′
i(0)|ZT

n,iθ|3 ≤ C∥H1/2Znθ∥∞
n∑

i=1

fi(0)|ZT
niθ|2 = o

(
s−2(log s)−1

)
.

(A.5)

Next, we deal with the penalty term in the expected value Qn(θ). Since
1
nS

THS has bounded eigenvalues by Condition 2, it follows from the as-
sumption of the theorem that, for any θ ∈ B0(n),

∥Vnθ∥∞ ≤ ∥Vnθ∥2 ≤ Cn−1/2∥θ∥2 = o
(

min
{1≤j≤s}

|β∗
j |
)
.

Hence, sgn(β∗
1 +Vnθ) = sgn(β∗

1) and

(A.6) ∥d0 ◦ (β∗
1 +Vnθ)∥1 − ∥d0 ◦ β∗

1∥1 = d̃
T
0 Vnθ,

where d̃0 is a s-vector with j-th component djsgn(β
∗
j ). Combining (A.4)–

(A.6) yields

Qn(θ) = ∥θ∥22 + nλnd̃
T
0 Vnθ + o

(
1
)
,(A.7)

where o(·) is uniformly over all θ ∈ B0(n).

We now deal with the stochastic part Tn(θ). DefineD = −
(
ρ′τ (ε1), · · · , ρ′τ (εn)

)T
,

Wn = ZT
nD, and

Rn(θ) = ∥ρτ (ε− Znθ)∥1 − ∥ρτ (ε)∥1 −WT
nθ.
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Then E[WT
nθ] = 0 and

(A.8) Tn(θ) = WT
nθ + rn(θ),

where rn(θ) = Rn(θ) − E[Rn(θ)]. Here, W
T
nθ can be regarded as the first

order approximation of ∥ρτ (ε − Znθ)∥1 − ∥ρτ (ε)∥1. We next show rn(θ) is
uniformly small. By Lemma 3, there exists a sequence bn → ∞ such that
for any ϵ > 0,

(A.9) P (|rn(θ)| ≥ ϵ) ≤ exp
(
− Cϵbns(log s)

)
.

Define λn(θ) = Gn(θ) − nλnd̃
T
0 Vnθ − WT

nθ and λ(θ) = ∥θ∥22. Then by
definition (A.1), λn(θ) and λ(θ) are both convex functions on the set B0(n).
Furthermore, by definition, we can write rn(θ) as

rn(θ) = λn(θ)− λ(θ)− o(1).

Since ∥θ∥2 < c6
√
s for all θ ∈ B0(n), by Condition 1 we have that for any

θ1,θ2 ∈ B0(n),∣∣λ(θ1)− λ(θ2)
∣∣ = ∣∣(θ1 + θ2)

T (θ1 − θ2)
∣∣

≤ ∥(θ1 + θ2)∥2∥(θ1 − θ2)∥2 ≤ Cs∥θ1 − θ2∥∞.

Thus, the above result and (A.9) indicate that conditions in Lemma 4 are
satisfied. Then, for any compact set Ks = {∥θ∥2 ≤ c4

√
s} ⊂ B0(n) with

0 < c4 < c6 some constant,

(A.10) sup
θ∈Ks

|rn(θ)| = op(1).

Combining (A.2), (A.7) and (A.8) we can write that

Gn(θ) = ∥θ∥22 + nλnd̃
T
0 Vnθ +WT

nθ + rn(θ) + o
(
1
)

(A.11)

= ∥θ − ηn∥22 − ∥ηn∥22 + rn(θ) + o
(
1
)
,(A.12)

where

ηn = −1

2

(
nλnVnd̃0 +Wn

)
.

By a classic weak convergence result, it is easy to see that

cT (ZT
nZn)

−1/2Wn
D−→ N(0, τ(1− τ)),

for any c ∈ Rs satisfying cT c = 1. It follows immediately that

(A.13) cT (ZT
nZn)

−1/2
(
ηn +

1

2
nλnVnd̃0

)
D−→ N

(
0, τ(1− τ)

)
.
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We only need to show that the minimizer θ̂ of Gn(θ) is close to ηn, i.e., for
any ϵ > 0,

P
(
∥θ̂ − ηn∥2 ≥ ϵ

)
→ 0.(A.14)

Hence Theorem 3 will follow from (A.13) and Slutsky’s lemma.
We now proceed to prove (A.14). First, let B1(n) be a ball with center

ηn and radius ϵ. Since cTWn has asymptotic normal distribution N(0, 1)
for any c ∈ Rs with cTc = 1, and nVnV

T
n = ( 1nS

THS)−1 has bounded
eigenvalues, by definition, we can bound ηn as

∥ηn∥2 ≤
1

2

(
∥Wn∥2 + nλn∥VT

n d̃0∥2
)

≤ 1

2

(
Op(

√
s) + Cλn

√
n∥d0∥2

)
=

C
√
s

2
(1 +Op(1)),(A.15)

where the last step is by the assumption λn
√
n∥d0∥2 = O(

√
s) of the the-

orem. Since c6 in the definition of B0(n) can be chosen to be much larger
than C/2, it follows that for each fixed s, the compact set Ks = {∥θ∥2 ≤
c4
√
s} ⊂ B0(n) with c4 large enough can cover the ball B1(n) with proba-

bility arbitrarily close to 1. Therefore, by (A.10)

(A.16) ∆n ≡ sup
θ∈B1(n)

|rn(θ)| ≤ sup
θ∈Ks

|rn(θ)| = op(1).

Now, we are ready to prove (A.14). Consider the behavior ofGn(θ) outside
of the ball B1(n). Let θ = ηn +κu ∈ Rs be a vector outside the ball B1(n),
where u ∈ Rs is a unit vector and κ is a constant satisfying κ > ϵ, with ϵ
the radius of B1(n). Define θ∗ as the boundary point of B1(n) that lies on
the line segment connecting ηn and θ. Then we can write θ∗ = ηn + ϵu =
(1− ϵ/κ)ηn + ϵθ/κ. By the convexity of Gn, (A.12) and (A.16),

ϵ

κ
Gn(θ) +

(
1− ϵ

κ

)
Gn(ηn) ≥ Gn(θ

∗) ≥ ϵ2 − ∥ηn∥22 −∆n ≥ ϵ2 +Gn(ηn)− 2∆n.

Since ϵ < κ, it follows that for large enough n,

(A.17) inf{∥θ−ηn∥>ϵ}Gn(θ) ≥ Gn(ηn) +
κ

ϵ
[ϵ2 − op(1)] > Gn(ηn).

This establishes (A.14) and proves Theorem 3.
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A.2. Proof of Theorem 5. The proof of Theorem 5 follows from those
of Theorems 3 and 4. We use C to denote a generic constant in the proof. By
Theorem 4, with asymptotic probability one, there exists a global minimizer

β̂ = (β̂
T

1 ,0
T )T of L̂n(β) and ∥β̂1 − β∗

1∥2 ≤ an.
Next we study the asymptotic normality of β̂1. Following (A.1) in the

proof of Theorem 3, define

G̃n(θ) = L̂n(Vnθ + β∗
1,0)− L̂n(β

∗
1,0),

where Vn and θ are the same as in the proof of Theorem 3. Then θ̂n =
V−1

n (β̂1−β∗
1) is a global minimizer of G̃n(θ). The idea of the proof is to show

thatGn(θ) in (A.1) and G̃n(θ) are uniformly close to each other. SinceGn(θ)
can be well approximated by a sequence of quadratic functions, G̃n(θ) can
be well approximated by the same sequence of quadratic functions. Thus,
the minimizer of G̃n(θ) enjoys the same asymptotic properties as that of
Gn(θ).

We now proceed to prove that Gn(θ) and G̃n(θ) are uniformly close. To
this end, first note that for any β1 with ∥β1∥2 < C

√
s,

|Ln(β1,0)− L̂n(β1,0)| ≤ nλn∥β1∥2∥d∗
0 − d̂0∥2 ≤ Cnλn

√
s∥d∗

0 − d̂0∥2.
(A.18)

For 1 ≤ j ≤ s, by the mean-value theorem,

(A.19) |d∗j − d̂j | = |p′λn
(|β∗

j |)− p′λn
(|β̂ini

j |)| = |p′′λn
(|β̃j |)(β∗

j − β̂ini
j )|,

where β̃j lies on the segment connecting β∗
j and β̂ini

j . By Condition 5 and
the triangle inequality, with asymptotic probability one

|β̃j | ≥ |β∗
j | − |β̂j − β∗

j | > |β∗
j | − C2

√
s(log p)/n > 2−1min

j<s
|β∗

j |.

This together with Condition 6 ensures that p′′λn
(|β̃j |) = op(s

−1λ−1
n (n log p)−1/2).

Thus, in view of (A.19),

∥d̂0 − d∗
0∥2 ≤ op(s

−1λ−1
n (n log p)−1/2)∥β∗

1 − β̂
ini

1 ∥2 ≤ op(s
−1/2λ−1

n n−1).

Since ∥θ∥2 ≤ C
√
s ensures ∥β1∥2 ≤ C

√
s, the above inequality combined

with (A.18) entails that

sup
θ∈B0(n)

|Gn(θ)− G̃n(θ)| = sup
∥β1∥2≤C

√
s

|Ln(β1,0)− L̂n(β1,0)| = op(1),
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where B0(n) is defined in Theorem 3. Therefore, by the above result and
(A.17), for any θ ∈ B0(n) and ∥θ − ηn∥2 > ϵ with ϵ > 0 arbitrarily small,

inf
{∥θ−ηn∥2>ϵ}

G̃n(θ) ≥ inf
∥θ−ηn∥2>ϵ

Gn(θ)− sup
θ∈B0(n)

|Gn(θ)− G̃n(θ)|

≥ Gn(ηn) +
κ

ϵ
[ϵ2 − op(1)]− op(1)

≥ G̃n(ηn) +
κ

ϵ
[ϵ2 − op(1)]− op(1).

Then, it follows immediately that the minimizer ∥θ̂n−ηn∥2 ≤ ϵ with asymp-
totic probability one. Thus θ̂n − ηn = op(1). The proof of Theorem 5 is
completed.

A.3. Lemmas.

Lemma 3. Assume conditions of Theorem 3 hold. Let Rn,i(θ) = ρτ (εi−
ZT
n,iθ)−ρτ (εi)+ρ′τ (εi)Z

T
n,iθ and Rn(θ) =

∑n
i=1Rni(θ). Then for any ϵ > 0,

P (|Rn(θ)− E[Rn(θ)]| ≥ ϵ) ≤ exp
(
− Cϵbns

2(log s)
)
,

where bn is some diverging sequence such that bns
7/2(log s)maxi ∥Zni∥2 → 0,

and C > 0 is some constant.

Proof. Let ξi = Rn,i(θ)−E[Rn,i(θ)]. Then Rn(θ)−E[Rn(θ)] =
∑n

i=1 ξi.
Since Rn,i(θ)’s are independent, by Markov’s inequality we obtain that for
any ϵ > 0 and t > 0,

P
(
Rn(θ)− E[Rn(θ)] ≥ ϵ

)
≤ e−tϵE

[
exp

(
t

n∑
i=1

ξi

)]
= exp

(
− tϵ− t

n∑
i=1

E[Rn,i(θ)]
) n∏

i=1

E[exp(tRn,i(θ))].(A.20)

We next study E[Rni(θ)] and E
[
exp

(
tRni(θ)

)]
in (A.20). Using a similar

argument to that for (A.4) we can prove that

E[Rn,i(θ)] = E[ρτ (εi − ZT
n,iθ)− ρτ (εi)] = fi(0)(Z

T
n,iθ)

2 +O
(
(ZT

n,iθ)
3
)
,

where O(·) is uniformly over all i. Thus, it follows from the definition of Zn,i

that

t

n∑
i=1

E[Rn,i(θ)] = t∥θ∥22 +O
(
t

n∑
i=1

(ZT
n,iθ)

3
)
.(A.21)
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Now, we consider E
[
exp

(
tRni(θ)

)]
. If ZT

n,iθ > 0, then by definitionRn,i(θ) =

(ZT
n,iθ − εi)1{0 ≤ εi ≤ ZT

n,iθ}. By Condition 1 and Taylor expansion it fol-
lows that

E
[
exp

(
tRn,i(θ)

)]
≤ 1 +

(
exp(tZT

n,iθ)− 1
)
P (0 ≤ εi ≤ ZT

n,iθ)

≤ 1 + fi(0)t|ZT
n,iθ|2 +O(t2|ZT

n,iθ|3).

When ZT
n,iθ < 0, we can get the same result using a similar argument. Since∏n

i=1(1 + xi) ≤ exp(
∑n

i=1 xi) for xi > 0, in view of (A.5) and the above
inequality we obtain that

n∏
i=1

E
[
exp

(
tRn,i(θ)

)]
≤ exp

( n∑
i=1

E
[
exp

(
tRn,i(θ)

)
− 1

])
≤ exp

(
t∥θ∥22 +O

(
t2

n∑
i=1

|ZT
n,iθ|3

))
.(A.22)

Substituting (A.21) and (A.22) into (A.20) gives

P
(
Rn(θ)− E[Rn(θ)] ≥ ϵ

)
≤ exp

(
− tϵ+O

(
t2

n∑
i=1

|ZT
n,iθ|3

))
.(A.23)

Choosing t = 2s2(log s)bn with bn → ∞ such that bns
7/2(log s)maxi ∥Zni∥2 →

0, and using similar idea to that for (A.5) we obtain that

t
n∑

i=1

|ZT
n,iθ|3 ≤ Ctmax

i
|ZT

n,iθ|
n∑

i=1

fi(0)|ZT
n,iθ|2 ≤ Cts3/2max

i
∥Zn,i∥2 → 0.

Plugging this into (A.23) yields that

P
(
Rn(θ)− E[Rn(θ)] ≥ ϵ

)
≤ exp

(
− Cϵbns

2(log s)
)
.

Repeating the same argument for P
(
Rn(θ) − E[Rn(θ)] ≤ −ϵ

)
completes

the proof.

Lemma 4. Let λ(θ) be a positive function defined on a convex, open
subset Θs = {θ ∈ Rs : ∥θ∥2 < c6

√
s} of Rs, and {λn(θ) : θ ∈ Θs} be a

sequence of random convex functions defined on Θs, where c6 > 0 is some
constant. Suppose that there exists some bn → ∞ such that for every θ ∈ Θs,
the following holds for all ϵ > 0

P
(
|λn(θ)− λ(θ)| ≥ ϵ

)
≤ c9 exp

(
− c7s

2(log s)bnϵ
)
,
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where c7, c9 are two positive constants. Let Ks be a compact set in Rs such
that Ks = {∥θ∥2 ≤ c4

√
s} ⊂ Θs, where c4 < c6 is some positive constant.

If, for some constant c8 > 0, |λ(θ1) − λ2(θ2)| ≤ c8s∥θ1 − θ2∥∞ for any
θ1,θ2 ∈ Θs, then

sup
θ∈Ks

|λn(θ)− λ(θ)| = op(1).

Proof. The proof is an extension of the convexity lemma in Pollard
(1990). The basic idea is to prove that Ks can be covered by a number of
cubes, and λn(θ) and λ(θ) are uniformly close over the set of vertices of
these cubes. Within each cube, values of both λn(θ) and λ(θ) do not change
significantly. Thus λn(θ) and λ(θ) are uniformly close over Ks. In this proof
we use C to denote some generic positive constant.

We proceed to prove the lemma. Since |λ(θ1) − λ(θ2)| ≤ c8s∥θ1 − θ2∥∞
for any θ1,θ2 ∈ Θs, it follows that for a fixed ϵ > 0, the function λ(θ) varies
by less than ϵ/s over each cube of side δ ≡ ϵ/(s2c8) that intersects Ks. Note
that Ks can be covered by less than (2c4

√
s/δ)s = (2c4c8s

5/2)s such cubes.
Then in total, there are less than 2s(2c4c8s

5/2)s vertices. Denote by Vs the
set of all such vertices whose cubes intersect Ks. Since c6 can be much larger
than c4 and the edge of each cube, δ = ϵ/(c8s

2), is small and decreases with
s, all vertices in Vs fall in Θs as well. Thus by the pointwise convergence
assumption in the Lemma, it is easy to derive that for any ϵ > 0, as bn → ∞,

P
(
max
θ∈Vs

|λn(θ)− λ(θ)| ≥ ϵ/s
)
≤ c6 exp

(
Cs log(Cs)− c7s(log s)bnϵ

)
→ 0.

Therefore,

(A.24) Mn ≡ max
θ∈Vs

|λn(θ)− λ(θ)| = op(ϵ/s).

For any θ ∈ Ks, it will fall into a cube and thus can be written as the
convex combination of this cube’s vertices {θi} in Vs, that is, θ =

∑
i αiθi

with αi ∈ [0, 1). Then by the convexity of λn(θ) and (A.24),

λn(θ) ≤
∑

αiλn(θi) ≤
∑
i

αi{|λn(θi)− λ(θi)|+ |λ(θi)− λ(θ)|+ λ(θ)}

≤ max
i

|λn(θi)− λ(θi)|+ ϵ/s+ λ(θ) ≤ Mn + ϵ/s+ λ(θ).

Thus,

(A.25) P
(

sup
θ∈Ks

(λn(θ)− λ(θ)) > 2ϵ/s
)
→ 0.
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Next we prove the lower bound. Each θ in Ks lies within a δ-cube with a
vertex θ0 in Ds, thus

θ = θ0 +
s∑

i=1

δiei with |δi| < δ,

where e1, · · · , es denote s coordinate directions. Without loss of generality
suppose 0 ≤ δi < δ for each i. Define θi to be the vertex θ0 − δei in Ds.
Then θ0 can be written as a convex combination of θ and θi:

θ0 =
δ

δ +
∑

j δj
θ +

∑
i

δi
δ +

∑
j δj

θi.

Denote by a = δ
δ+

∑
j δj

and ai =
δi

δ+
∑

j δj
. Since 0 ≤ δj < δ, it follows that

the coefficient for θ can be bounded as a ≥ 1
1+s . Since λn(·) is convex, by

(A.24) we obtain that

aλn(θ) ≥ λn(θ0)−
∑
i

aiλn(θi) ≥ λ(θ0)−
∑
i

aiλ(θi)− 2Mn

≥ λ(θ)− ϵ

s
−

∑
i

ai(λ(θ) +
ϵ

s
)− 2Mn ≥ aλ(θ)− 2ϵ

s
− 2Mn.

Since a > (1 + s)−1, it follows from the above inequality and (A.24) that

λn(θ)− λ(θ) ≥ (−2ϵ

s
− 2Mn)(s+ 1) ≥ −2ϵ(s+ 1)

s
− o(1).

Therefore,

(A.26) P
(

inf
θ∈Ks

(λn(θ)− λ(θ)) < −3(1 + s)
ϵ

s

)
→ 0.

Since we can choose ϵ arbitrarily small, the uniform convergence result
follows easily by combining (A.25) with (A.26).

A.4. Proof of Proposition 1. Since s is finite, the summation of the
probability below is of the same order as the maximum of the probability
below. The distribution result (equation (3.1) in the main paper) entails
that

P (∥ 1
n
STε∥∞ > z) = P ( max

1≤j≤s
|x̃T

j ε| > nz) ∼
s∑

j=1

P (|x̃T
j ε| > Cnz)

∼
s∑

j=1

∥x̃j∥ααcα(Cnz)−α,
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where C > 0 is some generic constant. For any sequence b̃n such that b̃n →
∞, by letting z = n−1bnb̃n with bn = (

∑s
j=1 ∥x̃j∥αα)1/α, we have that

P (∥n−1STε∥∞ > n−1bnb̃n) → 0.

In other words, ∥n−1STε∥∞ = Op(n
−1bn). Hence, for the following con-

dition, β̃M∗ + λnsgn(β̃M∗) = β∗
M∗ + n−1STε, to have a solution β̃ =

(β̃1, · · · , β̃s)T with β̃j > 0 for all j = 1, · · · , s, the necessary conditions
are β0nb

−1
n → ∞ and λn < β0. Combining these conditions we have

λn < β0 ≡ n−1bnb̃n,(A.27)

with some diverging sequence b̃n.
We next check if the following condition is satisfied, ∥QTε∥∞ ≤ nλn.

Combining (3.1) and (A.27) ensures that for j > s,

P (|x̃T
j ε| > nλn) ≥ P (|x̃T

j ε| > bnb̃n) ∼ ∥x̃j∥ααcα(bnb̃n)−α.

Since we assumed supp(x̃j)∩supp(x̃i) = ∅ for any i, j ∈ {s+1, · · · , p}, it fol-
lows that QTε is a vector of independent random variables with components
x̃T
j ε. Then,

P
(
∥QTε∥∞ > nλn

)
= 1− P

(
∥QTε∥∞ ≤ nλn

)
= 1−

∏
j>s

(
1− P (|x̃T

j ε| > nλn)
)

≥ 1−
∏
j>s

(
1− C∥x̃j∥αα(bnb̃n)−α

)
= 1− exp

(∑
j>s

log
(
1− C∥x̃j∥αα(bnb̃n)−α

))
.

Since log(1 + x) ≤ x for all x > −1, we have that∑
j>s

log
(
1− C∥x̃j∥αα(bnb̃n)−α

)
≤ −C

∑
j>s

∥x̃j∥αα(bnb̃n)−α.

Combining the above two inequalities, if
∑

j>s ∥x̃j∥αα(bnb̃n)−α → c0/C ∈
(0,∞], then

P
(
∥QTε∥∞ > nλn

)
≥ 1− e−c0 .

That is, with probability at least 1− e−c0 ,

∥QTε∥∞ ≤ nλn,

fails to hold and Lasso does not have the model selection oracle property. In
fact, if b̃n ≤ O(n−1(

∑
j>s ∥x̃j∥αα)1/αb−1

n ), or equivalently by (A.27),

β0 ≤ O(n−1
(∑
j>s

∥x̃j∥αα)1/α
)
,
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then c0/C ∈ (0,∞]. In other words, unless we have

nβ0{
∑
j>s

∥x̃j∥αα}−1/α → ∞,(A.28)

Lasso is not able to recover the true model and the correct sign.
Finally, since ∥x̃j∥2 =

√
n, |supp(x̃j)| = O(n1/2) and maxij |xij | = O(n1/4),

the nonzero components of Q are all of the same order O(n1/4). Conse-
quently, ∥x̃j∥αα must be all of the same order O(n(2+α)/(4)).

Then, n{
∑

j>s ∥x̃j∥αα}−1/α = O
(
n

3
4
− 1

α

)
and the condition (A.28) above

becomes n
3
4
− 1

αβ0 → ∞.

APPENDIX B: REAL DATA EXAMPLE

In this section, we use expression quantitative trait locus (eQTL) mapping
to illustrate the performance of R-Lasso and AR-Lasso. eQTL studies aim
at finding the variations of genotype in a certain part of a chromosome that
are associated with the gene expression levels.

In this study, we conducted a cis-eQTL mapping for the gene CHRNA6,
cholinergic receptor, nicotinic, alpha 6. CHRNA6 is located on the 8th chro-
mosome, in the cytogenetic location 8p11. CHRNA6 is thought to be related
to activation of dopamine releasing neurons with nicotine (Thorgeirsson et
al., 2010). Therefore, CHRNA6 has been the subject of many nicotine ad-
diction studies on people with western European heritage (Saccone et al.,
2009; Thorgeirsson et al., 2010).

The data are from 90 individuals from the international ‘HapMap’ project
(The International HapMap Consortium, 2005), all with western Europe an-
cestry. The data are available on ftp://ftp.sanger.ac.uk/pub/genevar/. The
normalized expression data was generated with an Illumina Sentrix Human-6
Expression Bead Chip (Stranger et al., 2007). The SNPs under investigation
are located at 1 megabase upstream and downstream of the transcription
start site (TSS) of CHRNA6; in this range, there were 554 SNPs. The addi-
tive coding for SNPs was employed, with 0, 1 and 2 representing the major,
heterozygous, and minor populations, respectively. We further screened the
SNPs using a variation of the independent screening method (SIS) of Fan
and Lv (2008). We kept the top 100 SNPs that had correlation with the
gene expression levels. Finally, we applied Lasso, SCAD, R-Lasso and AR-
Lasso to the screened variables. The quantile parameter, τ was set to 0.5 for
R-Lasso and AR-Lasso, corresponding to the median regression. The tuning
parameter for all methods was chosen using five-fold cross validation. The
selected SNPs as well as their regression coefficients and distances from the
main transcription site are given in Table 1.
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Table 1
Selected SNPs for the eQTL study.

SNP Lasso SCAD R-Lasso AR-Lasso Distance from TSS (in kb)

rs7823138 -0.0046 -963
rs10090395 0.0513 0.1213 -941
rs3739368 0.0684 -921
rs4737019 0.0331 -889
rs7004640 -0.0170 -0.0114 -872
rs4737023 -0.0124 -849
rs10504049 -0.0216 -0.0096 -0.0082 -0.0505 -800
rs11990460 -0.0918 -769
rs6996712 0.0853 0.0139 -694
rs4466388 0.1214 0.1676 0.1603 0.1299 -681
rs4736825 0.0504 0.1255 -653
rs7819109 0.0716 -564
rs7012976 -0.0925 -529
rs6474389 0.0155 -420
rs3136797 -0.0124 -381
rs12542076 -0.0167 -247
rs13281070 0.0615 -233
rs5024226 0.0155 -93
rs4305884 0.0155 -89
rs10958726 0.0513 0.1213 -18
rs6985527 -0.0170 -0.0114 54
rs11995681 -0.0216 -0.0096 -0.0082 -0.0505 89
rs7818669 0.0538 0.0114 0.1056 0.1013 123
rs11775022 0.0502 138
rs10092934 0.0155 468
rs7016102 0.0770 0.0856 0.0293 538
rs11776934 0.0853 0.0139 590
rs12545574 -0.0363 -0.0942 -0.0093 749
rs9298634 0.0467 0.0171 0.0753 751
rs4737107 0.0222 780
rs10098088 0.0363 809

It is seen that robust regression methods (R-Lasso and AR-Lasso) found
more of the variables to be significant. R-Lasso and AR-Lasso selected 21
and 15 variables, respectively, whereas Lasso and SCAD only found 15 and
5 of the variables to be significant. Only 4 SNPs were included in all of the
models, (rs10504049, rs4466388, rs7818669, rs708190). Furthermore, none of
these SNPs were covered in the previous study (Saccone et al., 2009). We
speculate that the difference is due to the fact that the previous studies fo-
cused on SNPs that are only 50 kb upstream and downstream. Additionally,
these studies did not consider multiple regression which makes significant
use of the correlation structure in the data. In addition, among all the SNPs
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(a) Residuals from Lasso
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(b) Residuals from SCAD
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(c) Residuals from R-Lasso
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(d) Residuals from AR-Lasso

Fig 1: QQ-plots of residuals for different methods in the eQTL study

that are chosen by these four methods, only one of them (rs10958726) ap-
pears in the paper by Saccone et al. (2009), and only R-Lasso and AR-Lasso
found this SNP to be important.

As it was observed in the finite sample simulations, SCAD and AR-Lasso
consistently chose a smaller set of variables than their counterparts. Fur-
thermore, almost two thirds of the selected SNPs lie to the left of the tran-
scription site.

We would also like to note that the residuals from the fitted regressions
had very heavy right tails. This suggests that, at least for this particular
eQTL study, it is a lot more reasonable to use methods based on quantile
regression. The QQ-plots of the residuals from different regression methods
are shown in Figure 1.
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