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Appendix: Mathematical analysis11

We put the mathematical analysis of the system (2) in this appendix. The well-posedness of the model12

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

dS1

dt
=r(t)� ↵1S1V1 � µS1 + ⇣R1 �

C(t)

d1
S1,

dE1

dt
=↵1S1V1 � (µ+ ✏1)E1 �

C(t)

d1
E1,

dI1
dt

=✏1E1 � (µ+ � + �)I1 �
C(t)

d1
I1,

dR1

dt
=�I1 � (µ+ ⇣)R1 �

C(t)

d1
R1,

dU1

dt
=⇠1(U1 + L1 + V1)�

⇠1 � ⌫1

M1(t)
(U1 + L1 + V1)

2 � ⌫1U1 � �1I1U1,

dL1

dt
=� (⌫1 + ⌘1)L1 + �1I1U1,

dV1

dt
=� ⌫1V1 + ⌘1L1,
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>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

dS2

dt
=
C(t)

d1
S1 � ↵2S2V2 � µS2 + ⇣R2 �

C(t)

d2
S2,

dE2

dt
=
C(t)

d1
E1 + ↵2S2V2 � (µ+ ✏2)E2 �

C(t)

d2
E2,

dI2
dt

=
C(t)

d1
I1 + ✏2E2 � (µ+ � + �)I2 �

C(t)

d2
I2,

dR2

dt
=
C(t)

d1
R1 + �I2 � (µ+ ⇣)R2 �

C(t)

d2
R2,

dU2

dt
=⇠2(U2 + L2 + V2)�

⇠2 � ⌫2

M2(t)
(U2 + L2 + V2)

2 � ⌫2U2 � �2I2U2,

dL2

dt
=� (⌫2 + ⌘2)L2 + �2I2U2,

dV2

dt
=� ⌫2V2 + ⌘2L2,

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

dS3

dt
=
C(t)

d2
S2 � ↵3S3V3 � µ̄(t)S3 + ⇣R3,

dE3

dt
=
C(t)

d2
E2 + ↵3S3V3 � (µ̄+ ✏3)E3,

dI3
dt

=
C(t)

d2
I2 + ✏3E3 � (µ̄(t) + � + �)I3,

dR3

dt
=
C(t)

d2
R2 + �I3 � (µ̄(t) + ⇣)R3,

dU3

dt
=⇠3(U3 + L3 + V3)�

⇠3 � ⌫3

M3(t)
(U3 + L3 + V3)

2 � ⌫3U3 � �3I3U3,

dL3

dt
=� (⌫3 + ⌘3)L3 + �3I3U3,

dV3

dt
=� ⌫3V3 + ⌘3L3.

(2)
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is guaranteed by the following Theorem,13

Theorem 1 For any nonnegative initial condition X = (S(0),E(0), I(0),R(0),U(0),L(0),V(0)) 2 R21
+ ,14

where S(0) = (S1(0), S2(0), S3(0)), with analogous forms E, I, R, U, L, V , system (2) admits a unique15

solution in R21
+ and is bounded for t � 0.16

The proof of the theorem follows by showing the boundedness of the population sizes of livestock and17

female mosquitoes, respectively.18

In absence of the disease, system (2) reduces to19

S

0
1(t) =r(t)� (µ+

C(t)

d1
)S1(t) := F1(t, S1, S2, S3),

S

0
2(t) =

C(t)

d1
S1(t)� (µ+

C(t)

d2
)S2(t) := F2(t, S1, S2, S3),

S

0
3(t) =

C(t)

d2
S2(t)� µ̄(t)S3(t) := F3(t, S1, S2, S3),

(A1)

and20

U

0
1(t) =⇠1U1 �

⇠1 � ⌫1

M1(t)
U

2
1 � ⌫1U1,

U

0
2(t) =⇠2U2 �

⇠2 � ⌫2

M2(t)
U

2
2 � ⌫2U2,

U

0
3(t) =⇠3U3 �

⇠3 � ⌫3

M3(t)
U

2
3 � ⌫3U3.

(A2)

It is easy to see that system (A1) can be solved equation by equation and that the equations in system

(A2) are decoupled. Moreover, the solutions of system (A1) are positively invariant in R3
+. Denote

F (t, S) := (F1(t, S1, S2, S3), F2(t, S1, S2, S3), F3(t, S1, S2, S3)). F (t, S) is a subhomogeneous mapping for

S 2 R3
+, in the sense that F (t,↵S) >> ↵F (t, S), ↵ 2 (0, 1) for any t � 0. Analogous to Theorem 1,

we can obtain the ultimate boundedness of the solution of (A1). Solving the system (A1) equation by

equation, we obtain

S1(t) = e

�
R t
0 (µ+C(s)

d1
) ds

✓
S1(0) +

Z t

0
r(s)e

R s
0 (µ+C(⇠)

d1
) d⇠ ds

◆
.

We get a periodic solution S

⇤
1 (0) of period T1 via the requirement that S⇤

1 (T1) = S

⇤
1 (0), leading to

S

⇤
1 (0) =

R T1

0 r(s)e
R s
0 (µ+C(⇠)

d1
) d⇠ ds

e

R T1
0 (µ+C(s)

d1
) ds � 1

.
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We then may obtain the expression of S⇤
2 (t) by substituting the solution of S⇤

1 (t) into the second equation,21

and similarly for S⇤
3 (t). System (A1) admits a unique positive periodic solution (period is T1), which is22

globally asymptotically stable in R3
+ [1, 2]. Solving equations in system (A2) individually, we can also23

get the global stability of the positive periodic solution U

⇤
1 (t), U

⇤
2 (t), U

⇤
3 (t) (period is T2). Denote the24

disease free state as E0 = (S⇤
1 (t), S

⇤
2 (t), S

⇤
3 (t), U

⇤
1 (t), U

⇤
2 (t), U

⇤
3 (t)).25

Since we have two periods T1 and T2 involved in our model, we have an almost periodic system. Follow-

ing [3–5], we linearize all the equations for infectious compartments z = (E1, I1, E2, I2, E3, I3, L1, V1,

L2, V2, L3, V3)T of system (2) at the disease free state. The related Jacobian matrix can be written as

J |E0 = F (t)� V (t),

where

F (t) =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 ↵1S
⇤
1 (t) 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ↵2S
⇤
2 (t) 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ↵3S
⇤
3 (t)

0 0 0 0 0 0 0 0 0 0 0 0

0 �1U
⇤
1 (t) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �2U
⇤
2 (t) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 �3U
⇤
3 (t) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

and

V (t) =

0

B@
V1 0

0 V2

1

CA ,
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and

V1 =

0

BBBBBBBBBBBBBB@

µ+ ✏1 +
C(t)
d1

0 0 0 0 0

�✏1 µ+ � + � + C(t)
d1

0 0 0 0

�C(t)
d1

0 µ+ ✏2 +
C(t)
d2

0 0 0

0 �C(t)
d1

�✏2 µ+ � + � + C(t)
d1

0 0

0 0 �C(t)
d2

µ+ ✏3 +
C(t)
d3

0 0

0 0 0 �C(t)
d2

�✏3 µ+ � + � + C(t)
d3

1

CCCCCCCCCCCCCCA

,

and

V2 =

0

BBBBBBBBBBBBBB@

⌘1 + ⌫1 0 0 0 0 0

�⌘1 ⌫1 0 0 0 0

0 0 ⌘2 + ⌫2 0 0 0

0 0 �⌘2 ⌫2 0 0

0 0 0 0 ⌘3 + ⌫3 0

0 0 0 0 �⌘3 ⌫3

1

CCCCCCCCCCCCCCA

.

Let Y (t, s), t � 0 be the evolution operator of the almost periodic system

dy(t)

dt
= V (t)y(t).

Then, for each s 2 R, the 12⇥ 12 matrix Y (t, s) satisfies

dY (t, s)

dt
= �V (t)Y (t, s), t � s, Y (s, s) = I6⇥6,

where I12⇥12 is the 12⇥ 12 identity matrix.26

Define

AP (F, V ) := {� : � 2 AP (R, R12),mod� ⇢ mod(F, V )},

By Lemma 2.1 in [4], AP (F, V ) is a Banach space of all almost periodic functions from R to R12, with

the maximum norm. mod f(t) is defined as the smallest additive group of real numbers that contains the

Fourier exponent of f(t), where f(t) 2 AP (F, V ) is an almost periodic function [6]. Assume �(s) is the

initial distribution of all the infectious compartments. Define a linear operator L : AP (F, V ) ! AP (F, V )
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by

(L�) (t) =

Z t

�1
Y (t, s)F (s)�(s) ds

=

Z 1

0
Y (t, t� a)F (t� a)�(s� a) da, t 2 R,� 2 AP (F, V ).

It is easy to verify the conditions (A1)-(A7) in Wang and Zhao [4]. Hence, the basic reproduction number27

of the almost periodic system (2) can be defined as R0 = ⇢(L), and L is the so-called next generation28

operator. In [3], a next generation operator for periodic systems is derived, we can get the same formula29

for R0 if we consider our system as a periodic system with a period T = lcm(T1, T2). In [7], another30

linear operator defined as L̄ =
R1
0 F (t)Y (t, t � 1)�(t, a) da has spectral radius which is equal to ⇢(L).31

The complexity of the model prevents us from obtaining the explicit form of basic reproduction number.32

Although R0 provides the information on whether the disease will eventually die out in the three patches33

or not, we actually pay more attention to the instantaneous basic reproduction number, computed by the34

recipe of the next generation matrix [8] based on the number of susceptible population and values of35

parameters at the current time. The instantaneous basic reproduction number for three patches or an36

individual patch gives detailed and immediate changes of infections at di↵erent times during one year or37

period.38
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