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Abstract

Background: Guide-trees are used as part of an essential heuristic to enable the
calculation of multiple sequence alignments. They have been the focus of much
method development but there has been little effort at determining
systematically, which guide-trees, if any, give the best alignments. Some
guide-tree construction schemes are based on pair-wise distances amongst
unaligned sequences. Others try to emulate an underlying evolutionary tree and
involve various iteration methods.

Results: We explore all possible guide-trees for a set of protein alignments of up
to eight sequences. We find that pairwise distance based default guide-trees
sometimes outperform evolutionary guide-trees, as measured by structure derived
reference alignments. However, default guide-trees fall way short of the optimum
attainable scores. On average chained guide-trees perform better than balanced
ones but are not better than default guide-trees for small alignments.

Conclusions: Alignment methods that use Consistency or hidden Markov models
to make alignments are less susceptible to sub-optimal guide-trees than simpler
methods, that basically use conventional sequence alignment between profiles.
The latter appear to be affected positively by evolutionary based guide-trees for
difficult alignments and negatively for easy alignments. One phylogeny aware
alignment program can strongly discriminate between good and bad guide-trees.
The results for randomly chained guide-trees improve with the number of
sequences.

Keywords: Multiple Sequence Alignment; Guide-Tree Topology; Alignment
Accuracy; Benchmarking

Supplemental Material
(S1) Iterated vs Non-Iterated Alignments

When evaluating the effect of the guide-trees we turned off all iterations. This
change only applied to MUSCLE and MAFFT (FFT-NS-i/L-INS-i). We did this
not because we deliberately wanted to reduce the accuracy of these aligners but to
avoid reconstruction of the guide-trees. These aligners achieve a good improvement
in the alignment score through the iteration procedure. These improvements were
on average +1.48% for MAFFT FFT-NS-i, +1.25% for L-INS-i and +3.19% for
MUSCLE. Supplemental Figure (1S) shows the effect of turning iteration on and
off.

(S2) Simple Statistics on Reference Alignments
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Figure 1 Effect of Iteration for MAFFT and MUSCLE Not-iterated TC score –as used in this
study– along the x-axis. Iterated (default) TC score along the y-axis. Red dots for individual
protein families, black box for average of 153 families. Default (iteration) better than
non-iteration above bisectrix. Results for MAFFT FFT-NS-i/L-INS-i and MUSCLE
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Figure 2 Simple Statistics on Reference Alignments (a) Alignment length vs average identity,
alignments comprised of 5 sequences with red squares, of 6 with blue bullets, of 7 with magenta
triangles. Alignments of the full complement of 8 sequences with black upside-down triangles. (b)
Alignment length vs the length of the longest sequence in the alignment. Shape of the symbols
same as in panel (a), however, colour encodes average pairwise identity (high ID blue/green, low
ID red/yellow). (c) Average sequences length vs average identity, key same as panel (a). (d)
Number of families (along x-axis) where average identity (magenta triangles), alignment length
(blue bullets) and average sequence length (red boxes) is less than a certain value (along y-axes)
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Figure (2S) shows some simple statistics –as produced by Sean Eddy’s program
alistat– for the 153 reference alignments for alignments of 8 sequences used in this
study. All test sets in the main part of this study are comprised of 8 sequences; how-
ever, the reference alignments sometimes are comprised of fewer than 8 sequences.
If only 5, 6 or 7 HOMSTRAD reference sequences were available, then we used
homologous Pfam sequences to make up the full complement of 8. Alignment qual-
ity, however, can only be assessed based on the HOMSTRAD reference sequences.
Figure (2S) shows statistics for these references. No family contains fewer than
5 reference sequences.

37 reference families are comprised of 5 sequences (supplemented with 3 Pfam se-
quences), rendered in panels a-c of Figure S2 as square boxes. 27 reference families
are composed of 6 HOMSTRAD sequences (supplemented with 2 Pfam sequences)
rendered as bullets. 11 families consist of 7 HOMSTRAD reference sequences (sup-
plemented with 1 Pfam sequence), rendered as triangles. 78 families have the full
complement of 8 HOMSTRAD reference sequences. Out of these, 12 families con-
sisted of two protein domains, 3 families of three domains; all other families consisted
of one domain. The average pairwise identity of the reference alignments ranges from
14.76% to 77.55%. These are plotted along the x-axes of panels a and c, along the
rhs-y-axis of panel d and are rendered as colour in panel b. The average sequence
lengths range from 28.5 to 780.8 and are plotted along the y-axes of panels c and d.
Alignment lengths vary between 35 and 936, and are plotted along the y-axes of
panels a,b,d. The length of the longest sequence in each family is the smallest possi-
ble length of the alignment. This number varies between 31 and 854, and is plotted
along the x-axis of panel b.

(S3) Expected Imbalance under Equal Rates Markov Model

The index of imbalance, according to Colless [30] can be written as

I(C) =
k∑

i=1

∆i

where i runs over the number of interior nodes –in MSA all of degree 3– and where
∆i is the absolute difference in number of terminal nodes subtended by the two
branches of bifurcation i. This index can vary for a tree with N leaves between 0
(totally balanced) and (N − 1)(N − 2)/2 (totally chained). It was shown [26] that
under an equal rates Markov model the expected value for the Colless index and
its variance can be calculated recursively as
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(1)

For 8 leaves the expected Colless imbalance index is 8.66667, the standard variation
5.818, while we measure 8.86275 for the estimated phylogenies of the reference
alignments. 133 of the 153 families fall within 1σ around the expected mean.

(S4) List of Labeled Trees with Four Leaves

Balanced:
((1,2),(3,4)) — ((1,3),(2,4)) — ((1,4),(2,3))

Chained:
(((1,2),3),4) — (((1,2),4),3) — (((1,3),2),4) — (((1,3),4),2) — (((1,4),2),3)

— (((1,4),3),2) (((2,3),1),4) — (((2,3),4),1) — (((2,4),1),3) — (((2,4),3),1) —
(((3,4),1),2) — (((3,4),2),1)

(S5) Tree Exploration for 16 Leaves

For 16 sequences there are 10,905 topologically distinct unlabeled guide-trees and
6,190,283,353,629,375 distinct labeled trees. Evaluation (aligning and scoring) for
so many guide-trees would take too long. We therefore decided to reduce the above
numbers. On the one hand we wanted to sample trees of as many degrees of
im/balance as possible. On the other hand we wanted to reshuffle the leaves for
each topologically distinct tree as often as possible, while keeping the product of
the number of trees and the number of re-samples feasible. The range of possible
Colless indices for N = 16 is [0 : 105], however, when constructing unlabeled trees
we did only encounter 101 different values (there were no trees with 1,2,4,103,104).
We randomly picked one tree topology from all the topologies with a certain Colless
index. We felt that we could afford to evaluate around one million trees for each
family and settled on 10,000 reshuffles per tree. There are 16!/215 = 638, 512, 875
distinctly labeled balanced trees and 16!/2 ≈ 1013 distinctly labeled chained trees.
Therefore our sampling is only a small proportion of all the labeled and unlabeled
trees.

(S6) Measures of Im/Balance for Small Trees

Tables S1 and S2 show measures of im/balance for trees with 2 to 8 leaves. The
trees are rendered with nested parentheses, similar to Newick format. Next we quote
the ’Depth’, which is the maximum distance (in terms of number of internal nodes)
from the root. ’S’ is the Sackin measure [29] and ’C’ is the Colless measure as defined
in supplement S3 and originally in [30]. ’Inv-Max’ is the imbalance measure defined
in [31]. ’Entropy’ refers to the Shannon Entropy. ’Dia’ is the tree diameter. Table S2
precedes the ’Tree’ column by the identifying index ’ID’; data in Figure (6) are
arranged by this index. The last column in Table S2 quotes the number of distinct
ways the tree can be labeled. Figure (3S) gives a graphic representation of the trees
with eight leaves, as used in this study.

(7S) Core vs Non-Core Scoring

Benchmarks like BAliBASE 3.0 use ’core columns’ for scoring the alignments. The
idea behind this concept is that residues outside of these core regions may not be re-
liably aligned in the reference alignment. It is therefore not appropriate to use these
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Table 1 Im/balance measures for trees with 2-7 leaves

Tree Depth S C Inv-Max Entropy Dia
(1,2) 1 2 0 0.000000 0.301030 3

(1,(2,3)) 2 5 1 1.000000 0.451545 4
(1,(2,(3,4))) 3 9 3 1.500000 0.526802 5
((1,2),(3,4)) 2 8 0 2.000000 0.602060 5

(1,(2,(3,(4,5)))) 4 14 6 1.833333 0.564431 6
(1,((2,3),(4,5))) 3 13 3 2.500000 0.602060 5
((1,2),(3,(4,5))) 3 12 2 2.500000 0.677317 6

(1,(2,(3,(4,(5,6))))) 5 20 10 2.083333 0.583246 7
(1,(2,((3,4),(5,6)))) 4 19 7 2.833333 0.602060 6
(1,((2,3),(4,(5,6)))) 4 18 6 2.833333 0.639689 6
((1,2),(3,(4,(5,6)))) 4 17 5 2.833333 0.714946 7
((1,2),((3,4),(5,6))) 3 16 2 3.500000 0.752575 6
((1,(2,3)),(4,(5,6))) 3 16 2 3.000000 0.752575 7

(1,(2,(3,(4,(5,(6,7)))))) 6 27 15 2.283333 0.592653 8
(1,(2,(3,((4,5),(6,7))))) 5 26 12 3.083333 0.602060 7
(1,(2,((3,4),(5,(6,7))))) 5 25 11 3.083333 0.620874 7
(1,((2,3),(4,(5,(6,7))))) 5 24 10 3.083333 0.658503 7
((1,2),(3,(4,(5,(6,7))))) 5 23 9 3.083333 0.733761 8
(1,((2,3),((4,5),(6,7)))) 4 23 7 3.833333 0.677317 6
(1,((2,(3,4)),(5,(6,7)))) 4 23 7 3.333333 0.677317 7
((1,2),(3,((4,5),(6,7)))) 4 22 6 3.833333 0.752575 7
((1,2),((3,4),(5,(6,7)))) 4 21 5 3.833333 0.790204 7
((1,(2,3)),(4,(5,(6,7)))) 4 21 5 3.333333 0.790204 8
((1,(2,3)),((4,5),(6,7))) 3 20 2 4.000000 0.827832 7

Table 2 Im/balance measures for trees with 8 leaves

ID Tree Depth S C Inv-Max Entropy Dia #
1 (((1,2),(3,4)),((5,6),(7,8))) 3 24 0 5.000000 0.903090 7 315
2 ((1,(2,(3,4))),((5,6),(7,8))) 4 25 3 4.333333 0.865461 8 2520
3 ((1,(2,3)),((4,5),(6,(7,8)))) 4 25 5 4.333333 0.865461 8 5040
4 ((1,(2,(3,4))),(5,(6,(7,8)))) 4 26 6 3.666667 0.827832 9 5040
5 ((1,2),((3,(4,5)),(6,(7,8)))) 4 26 6 4.333333 0.827832 7 2520
6 ((1,(2,3)),(4,((5,6),(7,8)))) 4 26 6 4.333333 0.827832 8 2520
7 ((1,2),((3,4),((5,6),(7,8)))) 4 26 6 4.833333 0.827832 7 1260
8 ((1,(2,3)),(4,(5,(6,(7,8))))) 5 27 9 3.583333 0.809018 9 10080
9 ((1,2),((3,4),(5,(6,(7,8))))) 5 27 9 4.083333 0.809018 8 5040

10 (1,((2,(3,4)),((5,6),(7,8)))) 4 28 8 4.333333 0.714946 7 2520
11 ((1,2),(3,((4,5),(6,(7,8))))) 5 28 10 4.083333 0.771389 8 5040
12 (1,((2,(3,4)),(5,(6,(7,8))))) 5 29 11 3.583333 0.696132 8 10080
13 (1,((2,3),((4,5),(6,(7,8))))) 5 29 11 4.083333 0.696132 7 5040
14 ((1,2),(3,(4,((5,6),(7,8))))) 5 29 11 4.083333 0.752575 8 2520
15 (1,((2,3),(4,((5,6),(7,8))))) 5 30 12 4.083333 0.677317 7 2520
16 ((1,2),(3,(4,(5,(6,(7,8)))))) 6 30 14 3.283333 0.743168 9 10080
17 (1,(2,((3,(4,5)),(6,(7,8))))) 5 31 13 3.583333 0.639689 7 5040
18 (1,(2,((3,4),((5,6),(7,8))))) 5 31 13 4.083333 0.639689 7 2520
19 (1,((2,3),(4,(5,(6,(7,8)))))) 6 31 15 3.283333 0.667910 8 10080
20 (1,(2,((3,4),(5,(6,(7,8)))))) 6 32 16 3.283333 0.630282 8 10080
21 (1,(2,(3,((4,5),(6,(7,8)))))) 6 33 17 3.283333 0.611467 8 10080
22 (1,(2,(3,(4,((5,6),(7,8)))))) 6 34 18 3.283333 0.602060 8 5040
23 (1,(2,(3,(4,(5,(6,(7,8))))))) 7 35 21 2.450000 0.597356 9 20160

positions when evaluating an alignment produced automatically. We identified core
columns using secondary structure information, available from the HOMSTRAD
site, http://tardis.nibio.go.jp/homstrad/. Whenever the secondary structure pre-
diction for all reference sequences agreed within one column, we considered this
column as reliably aligned and designated it a core column. This methodology pro-
duces similar results to a previous study, where core columns were called if the
amino acids alpha carbons was within a threshold of 0.3nm [35].

Näıvely one would assume that the TC score of a multiple alignment should be
higher if only core columns are used. This is sometimes true, as for example for
plantltp in the bottom-right panel of Figure (4S), where all the points are above
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Figure 3 Topologically distinct Trees with 8 Leaves Dendrograms of all 23 topologically distinct
trees with 8 leaves. Perfectly balanced tree (1) bottom left, perfectly chained tree (23) top of
right-most column. Tree identifiers as in Table S2
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Figure 4 Comparison of TC scores for core columns and all columns Panels show TC scores for
four example families. Along the x-axes are plotted the TC scores if all columns in the reference
alignment are used; along the y-axes if only core columns are used for scoring. Each panel
contains 135,135 points, some of which may lay on top of each other. Alignment were produced
using Clustal Omega

the bisectrix. Two counter-examples are tgfb (top-right) and hormone rec (bottom-
left). For the latter non-core columns are apparently easy to align and the TC score
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drops when these columns are removed from the scoring procedure. However, by
far the most common scenario is where there is a tight correlation between core
and non-core column scoring, as seen, for example for lyase 1 (top-left panel of
Figure (4S).)

(S8) Sum-of-Pairs Results
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Figure 5 Comparison of SP Scores for default tree and phylogenetic tree SP scores for default
tree along x-axis, for phylogenetic tree along y-axis for (a) Clustal Omega, (b) MAFFT FFT-NS-i,
(c) L-INS-i, (d) MUSCLE. Colour dots for individual protein families. Blue and green for high
percentage identity reference alignments, yellow and red for low identity. Black box for average SP
score. Below dotted line default tree better than phylogenetic, above phylogenetic tree better than
default tree

Figure (1) compared the individual and average results for default and phylo-
genetic guide-trees in terms of TC scores. Figure (5S) shows results for the same
alignments but in terms of the sum-of-pairs score. The results are qualitatively sim-
ilar to those for the TC score in Figure (1). However, SP scores tend to be higher
than TC scores and we don’t see many points in the bottom left corner. Clustal
Omega and L-INS-i, again, fare slightly worse for the phylogenetic tree than for the
default tree. MUSCLE, again, has slightly better results for the phylogenetic tree.
MAFFT FFT-NS-i now has slightly better results for the phylogenetic tree than for
the default tree, where for the TC score this was the opposite.

(S9) Partial Results for 16 Sequences

For 8 sequences there are 23 unlabeled and 135,135 labeled trees. For 16 sequences
there are 10,905 and approximately 6.2×1015, respectively. This is not feasible, so we
generated alignments for 101 topologically distinct trees with 16 leaves and reshuf-
fled the sequences 10,000 times, leading to approximately one million alignments
per family. When systematically constructing trees with 16 leaves we encountered
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Figure 6 Quartiles of TC scores for different tree topologies with 16 leaves Tree topology along
the x-axis, left-most box for perfectly balanced tree, right-most box for perfectly chained tree.
Whiskers represent top/bottom 25% scores, band represents median score. Boxes are averages
over all 25 protein families with 16 sequences. Red horizontal line average default score

101 different values of the Colless score out of a maximum of 105. There are no
trees with 16 leaves and Colless scores of 1, 2, 4, 103 and 104, respectively.

We assembled 25 families with at least 12 reference sequences, padded with up
to 4 non-reference Pfam sequences. In order to speed up the analysis we restricted
ourselves to using Clustal Omega, MUSCLE and PAGAN. The analysis is anal-
ogous to the one for eight sequences. Results for the selected tree topologies for
16 sequences are shown in Figure (6S). We observe that on average chained trees
(high Colless scores) produce better TC scores than balanced trees (small Colless
scores). The results are qualitatively similar to the ones shown in Figure (6). For
Clustal Omega and MUSCLE the default TC score (red line) is higher that the me-
dian of the chained result, however, for MUSCLE only just about; for the version
of PAGAN that we tested there is no default.

(S10) Proportion of Best/Worst Topologies

For each protein family we registered which guide-tree topology produced the best
and the worst TC scores. If more than one tree produced the best/worst scores we as-
signed fractional counts to the corresponding topologies. Figure (7S) shows frequen-
cies for the best trees for 4-8 sequences. There are many more (2N−2 times) possible
chained guide-trees than there are balanced ones. For example, for N = 4 sequences
there are 12 chained guide-trees and 3 balanced ones. For N = 8 sequences there are
20,320 chained trees and 315 balanced ones. So, the pool of chained trees to draw
an optimal tree from is larger than for the balanced case. For this reason we divided
the raw frequencies by the number of possible trees for each topology – therefore
’frequencies’ do not add up to 1.0. For all numbers of sequences analysed in this
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Figure 7 Percentage how often topologies produce best score Panels show rescaled frequencies
for S=4,5,6,7,8 sequences. ’U’ indicates the number of different topologies, represented by groups
of histogram bars. That is, U=2 for S=4 sequences, U=3 for S=5, U=6 for S=6, U=11 for S=7
and U=23 for S=8 sequences. Left-most group of bars for perfectly balanced trees, right-most
group of columns for perfectly chained trees, in-between groups as indexed in Table S2. ’L’
indicates the number of distinctly labeled trees. If more than one tree produced optimum score
then fractional counts were assigned. From left-to-right, results for Clustal Omega in red, L-INS-i
in green, MAFFT FFT-NS-i in dark blue, MUSCLE in magenta and PAGAN in light blue

study it is always the chained guide-tree that produces most frequently the best
TC scores. If the rescaling had not been performed then the histogram bars would
be slanted even more towards the chained trees. This is consistent with Figure (6), in
which the chained guide-tree exhibited the highest scores. This figure is only meant
to provide supporting evidence of the fact that chained guide-trees potentially can
be better than balanced guide-trees. In Figure (7S) we only count topologies that
produce the best TC scores and discard trees that produce the second best and
third best TC scores etc. This is true for all aligners.

Figure (8S) shows the opposite to Figure (7S), that is, the proportion of times
a certain topology produced the worst TC score. Again, we only registered the
worst and not the second of third worst scores etc. However, here the trend is
less ambiguous: while the pool of possible balanced trees is much smaller than the
pool of possible chained trees, they are very much over-represented when counting
worst TC scores. This is true for all aligners, except for PAGAN. This suggests that
PAGAN does perform sub-optimally when given a chained guide-tree. Figure (9S)
is the equivalent of Figure (5), in that it displays how many families have more than
a certain number of guide-trees producing the worst possible TC scores. While in
Figure (5) PAGAN was particularly sensitive in picking out good guide-trees, it does
not behave substantially differently in Figure (9S) in being vulnerable to bad guide-
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trees. This suggests that the accuracy of PAGAN alignments is indeed vulnerable
to incorrectly labeled chained guide-trees.

(S11) Effect of Tree Branch Lengths on Best Alignment

Figure 10 Six example default trees. Trees with a varying degree of branch length variability.
These trees are identified in Figure (11S) by label.

The distances amongst individual sequences are used in constructing the default
guide-trees. The distance matrix indirectly encodes the topology of the default
guide-tree. In Figure (11S) we use the Colless measure of imbalance as a proxy
for tree topology – perfectly balanced trees have a Colless score of 0, perfectly
imbalanced/chained trees have a Colless score of 21. This figure is the same as
Figure (4), where one saw that, on average, trees with small variability of branch
lengths produced more balanced trees. Three examples for such low-variability /
balanced trees are r9 igvar-h, r8 toxin 2 and r8 grs, which can be found in the
bottom-left-hand corner of the top panel of Figure (11S).

Trees with high variability are r8 ltn, r6 ins and r8 ghf22. The default tree for
r8 ghf22 is composed of two tight clusters (short branch lengths) that are loosely
coupled (long branches).

However, the optimum guide-tree for r8 ghf22 is perfectly chained, as can be seen
in the bottom panel of Figure (11S), where the Colless score for r8 ghf22 is 21.
Apparently it is not necessary to align the two clusters separately. This is true for
most families and can be seen by the fact that in the bottom panel most guide-tree
topologies are shifted up towards the chained topology.

(S12) Trend of Random Chained Trees vs Default
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panel shows Colless score for best guide-tree. Perfectly balanced trees have a Colless score of 0,
perfectly chained trees have a score of 21.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4  6  8  10  12  14  16

T
C

 S
co

re

#Sequences

Chained
Default

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 4  6  8  10  12  14  16

∆T
C

 S
co

re

#Sequences

Chained-Default

Figure 12 Trend of TC score for chained trees using MUSCLE (left) MUSCLE default
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Whiskers for top/bottom quartile, band for median. (right) Quartiles of chained MUSCLE
alignments relative to TC score of the default alignment

One result of this study is that chained guide-trees on average produce alignments
with higher TC scores than other guide-tree topologies. The default guide-tree on
average produced better TC scores than a randomly labeled chained guide-tree.
This is true for all aligners and for all numbers of sequences we examined in this
study (4-8,16). However, for MUSCLE this difference was only marginal. In Fig-
ure (12S) we plot the default and quartiles TC score for MUSCLE against the
number of sequences. Results for 4-8 sequences are averaged over the same 153 pro-
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tein families, results for 16 sequences over a reduced set of 25 families. In the left
panel TC scores are decreasing with number of sequences, however, the difference
between the default score and the median score appears to get smaller. For the
first 5 cases (4-8 sequences) the decreasing trend is due to the general deterioration
of TC scores with number of sequences, as described in [38]. TC scores for 16 se-
quences may be down due to the same effect or to the fact that the set of protein
families is different to the ones used for 4-8 sequences. For this reason we plotted
the TC scores in the right panel relative to the default score. While the spread
of the whiskers grows, the median is slowly increasing from a negative value. This
means that for small numbers of sequences the default MUSCLE guide-tree is on
average better than a randomly labeled chained guide-tree. However, the trend is
rising and a näıve extrapolation suggests that for around 35 sequences a randomly
labeled chained guide-tree is on average better than the default. This is consistent
with unpublished observations where for the BAliBASE 3.0 data set chained guide-
trees are about as good as default guide-trees. The average sequence numbers per
family for the different categories in BAliBASE 3.0 are between 7 and 63, which is
of the same order of magnitude as 35, as suggested in Figure (12S).
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