Supporting information

Array-based Discovery of Aptamer Pairs

Minseon Cho,^{†‡} Seung Soo Oh,[‡] Jeff Nie,[†] Ron Stewart,[†] Monte J. Radeke,^{\perp} Michael Eisenstein,^{†‡} Peter J. Coffey,^{\perp} James A. Thomson^{1,§} and H. Tom Soh^{*†‡}

[†]Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States

[‡]Materials Department, University of California-Santa Barbara, Santa Barbara, California 93106, United States

¹Morgridge Institute for Research, Madison, Wisconsin 53707, United States

¹Neuroscience Research Institute, University of California-Santa Barbara, Santa Barbara, California 93106, United States

[§]Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, United States

Figure S1. Equilibrium binding curve for ABA1. We obtained fluorescence intensities from eight identical arrays incubated with different concentrations of Alexa Fluor 647-labeled Ang2, and ABA1 exhibited the highest affinity/lowest K_d value ($K_d = 20.5 \pm 7.3 \text{ nM}$) (1).

Figure S2. Control experiments for aptamer pair binding. Enzyme-linked oligonucleotide assay (ELONA) experiments demonstrate that labeling both the capture and detection aptamers with biotin achieved sufficient signal-to-noise performance, as shown by the low background signals obtained in control experiments using both biotinylated aptamers. Error bars represent triplicate measurements.

Figure S3. Contribution of linker length to binding affinity for bidentate aptamer reagents. We connected ABA1 to ABA65 with flexible poly-T linkers of different lengths, and measured their binding affinities using a bead-based fluorescence assay. The ABA1-ABA65 construct with a 25T linker showed the highest binding affinity ($K_d = 97 \pm 20$ pM). Error bars represent triplicate measurements.

Figure S4. Binding affinity measurement for ABA1-ABA65 using ELONA. ABA1-ABA65 showed similar affinity as measured with ELONA in comparison to bead-based fluorescence binding assay measurements.

Figure S5. Binding affinity measurements for control sequences. The 25T linker alone showed minimal affinity to Ang2 ($K_d = 210 \text{ nM}$) and a scrambled aptamer sequence showed negligible Ang2 binding.

 Table S1. Aptamer array features

Aptamer sequences (5'>3')		
Top 235 sequences	[40nt-aptamer sequence]	
Top 235 sequences	[40nt-aptamer sequence]-TTTTTTTTTTTTTTTTTTTTTTTTT	
+ T linker		
Top 235 sequences	[40nt-aptamer sequence]-CCTATGCGTGCTACCGTGAA	
+ reverse primer		
forward + Top 235		
sequences +	AGGTCAGATG-[40nt-aptamer sequence]-CCTATGCGTG	
reverse		
Control sequences (5'>3')		
20-nt poly T linker	тттттттттттт	
40-nt poly-T linker	тттттттттттттттттттттттттттттттттт	
60-nt poly-T linker	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
Reverse primer	CCTATGCGTGCTACCGTGAA	
Reverse primer +T	CCTATGCGTGCTACCGTGAATTTTTTTTTTTTTTTTTTT	
linker		
Forward + reverse	AGCAGCACAGAGGTCAGATGCCTATGCGTGCTACCGTGAA	
primer		
Forward+T		
linker+Reverse	AGCAGCACAGAGGTCAGATGTTTTTTTTTTTTTTTTTTT	
primer		
Scrambled		
sequence	GGGTTTGCGAAAGGGAAAGGGTTTGTGTTTTTTGGGTTTT	
Thrombin aptamer	GGTTGGTGTGGTTGGTTTTTTTTTTTTTTTTTTTTTTTT	
(15 nt) + T linker		
Thrombin aptamer	AGTCCGTGGTAGGGCAGGTTGGGGTGACTTTTTTTTTTT	
(29 nt) + T linker		
PDGF-BB aptamer	CACAGGCTACGGCACGTAGAGCATCACCATGATCCTGTGTTTTTTTT	

Table S2. Screened aptamers, bidentate constructs and control sequences

ID	Sequence $(5^{\circ} \rightarrow 3^{\circ})$
Aptamer sequences	
ABA1	ACTTGTAGGGTTCGGCTGGTCAGGGTGTCCAAGTCTGTGG
ABA65	TTTGGGGTGGTTGGGGGGTGGGGGGGGGGGGGGGGGGGG
ABA92	GGTGCCATTGGGGACTGCTCGGGATTGCGGACTTGGCATC
ABA109	GGGTGCCATTGGGGACTGCTCGGGATTGCGGACTTGGCAT
ABA1-ABA65	[ABA1]-TTTTTTTTTTTTTTTTTTTTTTTTTTT-[ABA65]
ABA1-ABA92	[ABA1]-TTTTTTTTTTTTTTTTTTTTTTTTTTT-[ABA92]
ABA1-ABA109	[ABA1]-TTTTTTTTTTTTTTTTTTTTTTTTTTTTT-[ABA109]
Control sequences	
SC	GGGTTTGCGAAAGGGAAAGGGTTTGTGTTTTTTGGGTTTT
ABA1-SC	[ABA1]-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT[SC]
SC-ABA65	[SC]-TTTTTTTTTTTTTTTTTTTTTTTTTTTTT-[ABA65]
ABA1-25T	[ABA1]-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
25T-ABA65	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-[ABA65]

References

1. M. Cho, S. S. Oh, J. Nie, R. Stewart, M. S. Eisenstein, J. Chambers, J. D. Marth, F. Walker, J. A. Thomson, H. T. Soh, *Proc. Natl. Acad. Sci. U.S.A.* **2013**, *110*, 18460-18465.