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SUPPLEMENTARY	
  MATERIAL	
  

Selection of cell-lines and tissues: Number of positive and negative samples  
In ENCODE repository there are 6 cell-lines from tier 1 and tier 2 experiments that are 
characterized by the same 11 histone mark data (with the exception of H3K9me1). For the 
training of our model we chose randomly 2 cell-lines from tier 1 experiments and other 2 from 
tier 2. These 4 cell-lines are: Gm12878, H1-Hesc, Hep-G2 and Huvec. The other two cell-
lines, K562 (tier 1) and Hela (tier 2), are used for testing. We did not extend our experiments 
to tier 3 data since these data are of much lower quality. For these 6 cell-lines annotation 
maps from Hoffman et al 2013 are available. The number of positive and negative bins is 
presented in Supplementary Table 1.  
 
DEEP-FANTOM5 component implements tissue-specific models coming from different 
FANTOM5 tissues. Specifically, we chose 5 tissues from vital organs for training. All other 
were used for testing. Supplementary Table 2 presents the number of positive samples as 
well as characteristics related to these tissue-specific candidate enhancer regions. Note that 
for the number of negative samples we chose 10 times the number of positive regions and we 
created tissue-specific negative datasets. During the negative dataset generation we 
preserved the positive dataset distribution meaning that we constructed negative samples 
randomly with the same minimum, maximum and mean length as the positive enhancer 
regions.  
	
  
Selecting relevant features  
To build efficient models usually requires removing redundant features and may result in the 
selection of a small and optimized feature set. The small number of more relevant features 
can sometimes improve the prediction performance of the deployed models and result in 
faster, more reliable and more cost-effective classification. For the DEEP-ENCODE model, 
we initially tested the classification performance using three different feature subsets. One 
subset consisting of 11 histone marks, the other one that contains 351 sequence-derived 
attributes, and the third that contains all the available features (362 in total). However, when 
we used all features or when we used only the sequence-derived features we achieved much 
lower performance compared to the one obtained with feature set that contains only 11 
histone marks. For this reason the DEEP-ENCODE model is trained using this small subset 
of features. In addition, the relative small number of features (only 11 attributes) allows for the 
application of an exhaustive feature selection procedure. The exhaustive feature selection 
measures the classification performance for all possible combinations of features, which in 
our case are 2048 combinations.   
 
For each cell-line we chose randomly 20% of the original data (we preserved the ratio 1:10 
between positive and negative classes) and we performed classification using the same 
algorithm as the one deployed in DEEP-ENCODE component. We chose the combination of 
features that maximizes the geometric mean (GM) of sensitivity and specificity. 
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Supplementary Table 5 presents the results. Note that the whole process of exhaustive 
search took around 7 days to finish (sequential implementation in a Intel Xeon 2.5 GHz 
workstation). 
	
  
A closer look to the previous feature subsets shows that different sets of features appear 
optimal for different cell-lines. We also observe that attribute H3K4me1 is always selected. 
This is consistent with the experimental evidence that associate this histone mark with 
enhancers. Apart from that, H3K9ac is selected in 5 out of 6 cell-lines, whereas H3K4me2, 
H3K4me3 and H3K36me3 are selected in 4 out of 6 cell-lines.   
	
  
For the DEEP-FANTOM5 component it was impossible to perform exhaustive search over 
351 characteristics. Instead of that, we utilized a wrapper-based feature selection tool 
(http://www.cbrc.kaust.edu.sa/dwfs/ that utilizes a GA for identifying relevant features. We 
chose the default setting and we selected features using Naïve Bayes classifier since it is 
much faster than other classification techniques available in this tool. Similarly to the DEEP-
ENCODE component, selecting features for different tissues results in different relevant 
feature subsets. However, the performance we obtained using these selected features was 
always lower than using the performance achieved using the original feature vector. For this 
reason, we decided to use the original feature vector containing 351 features for the rest of 
our	
   experimentation. However, identifying a more compact feature subset for this specific 
component remains a challenging task to be done in future.  
	
  
Feature vector description used for exhausting search  
A description of the 11 histone marks used for exhaustive search of the best feature 
combination for DEEP-ENCODE is presented in Supplementary Table 3.  
 
Feature vector for DEEP-FANTOM5 and DEEP-VISTA 
The DEEP-FANTOM5 and DEEP-VISTA components use 351 features derived from the DNA 
sequence itself. Supplementary Table 4 describes the feature categories. Note that ChIP-seq 
histone modification data for the FANTOM5/VISTA tissues are not currently available.  
	
  
Tuning the ratio between testing and training  
Since we chose the simple holdout approach (2-fold cross validation) for assessing the 
classification performance of the cell-line/tissue specific models, one important question that 
arises is how many positive and negative samples are sufficient to use for training. To resolve 
this issue we utilized an internal trial-error approach. Specifically, we performed multiple 
trainings with different ratios starting from 10% for training and 90% for testing, and 
progressively decreasing the number of testing samples (and increasing the number of 
negative). We considered the geometric mean of specificity and sensitivity and the positive 
predictive value as the most indicative performance metrics for this task. Supplementary 
Tables 6-11 presents the classification results. For DEEP-ENCODE component we observe 
that selecting the 20% of the data for training and 80% of the data for testing is most suitable 
and also the training time is reduced. Note that we were training thousands of SVM models. 
Similarly, for DEEP-FANTOM5 component we observe that 40% of the data for the training 
and 60% of the data for testing appears to be a suitable choice.  
	
  
Testing the effectiveness of other decision-making mechanisms  
In the ensemble techniques, there are many ways to combine decisions from individual 
models and draw the final predictions. We experimented with the simple voting schema 
applied to the DEEP-ENCODE component as follows: First, we applied predefined thresholds 
for phases 1 and 2. We considered different proportions of voting for making a final decision 
and we reported results by applying various decision thresholds starting from 10% up 100% 
of total votes, meaning that we required at least 100, 200, 300, 400, 500, 600, 700, 800, 900, 
950, 960, 970, 980, 990 and 1000 classifiers to vote for the positive class. Supplementary 
Figure 1 presents the ROC performance curve. It becomes apparent that the ANN based 
decision mechanism is more sophisticated and has significant advantages over this simple 
voting schema. Thus, we applied the ANN decision mechanism for the experimentation 
presented in the manuscript.  
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Individual ENCODE cell-line specific models achieve poor Positive Predictive Values 
(PPV) 
In order to examine further the capabilities of models for predicting enhancers trained on 
single cell-lines, we generated Precision-Recall curves for several cell-lines and tissues. 
Supplementary figure 2 presents these results. Overall, we show that cell-specific models 
achieve inconsistent performance across different cell-lines and their precision is very low 
compared to DEEP-ENCODE component.  
	
  
Classification performance of DEEP-ENCODE with different feature subsets 
To measure the effectiveness of different feature subsets used for the DEEP-ENCODE model, 
we calculated the average classification performance achieved using sequence-derived 
features and feature set that contains all the 362 attributes. We also measured the 
performance using different ratios of positive and negative samples. Supplementary Tables 
14,15,16,17,18,19 present these results.  
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TABLES	
  AND	
  FIGURE	
  LEGENDS	
  
	
  
Supplementary Table 1: Number of positive and negative training samples/bins per 

ENCODE cell-line 

Cell-­‐line	
   Number	
  of	
  negative	
  bins	
  	
   Number	
  of	
  positive	
  bins	
  
Gm12878	
   1,936,200	
   193,620	
  

H1	
   809,800	
   80,980	
  
Hep	
   1,397,700	
   138,770	
  

Huvec	
   3,283,000	
   328,300	
  
	
  
	
  
Supplementary Table 2: Number of positive and negative training samples for FANTOM5 

tissues used for training. 

Tissue	
   Number	
  of	
  positive	
  
samples	
  	
  

Number	
  of	
  negative	
  
samples	
  

Min	
  
length	
  	
  

Max	
  
length	
  	
  

Mean	
  
length	
  	
  

Kidney	
   124	
   1,240	
   30	
   1367	
   327.24	
  
Heart	
   295	
   2950	
   18	
   1594	
   387.05	
  
Lung	
   217	
   2,170	
   48	
   1541	
   358.56	
  
Liver	
   84	
   840	
   59	
   1471	
   371.32	
  
Brain	
   639	
   6390	
   18	
   1594	
   394.76	
  
	
  
	
  
Supplementary Table 3: Description of histone modification marks 

Histone	
  modification	
  	
   Brief	
  Description	
  

H2AFZ	
   Variant	
  of	
  H2A	
  
H3K27ac	
   Detects	
  Acetylation	
  

H3K27me3	
   Detects	
  trimethylation	
  of	
  Lysine	
  27	
  
H3K36me3	
   Marks	
  actively	
  transcribed	
  regions	
  
H3K4me1	
   Associated	
  with	
  enhancers	
  
H3K4me2	
   Marks	
  promoters	
  and	
  enhancers	
  
H3K4me3	
   Associated	
  with	
  active	
  promoters	
  
H3K79me2	
   Marks	
  transcriptional	
  transition	
  regions	
  

H3K9ac	
   Marks	
  promoters	
  in	
  chromatin	
  regions	
  
H3K9me3	
   Associated	
  with	
  silenced	
  chromatin	
  	
  
H4K20me1	
   Associated	
  with	
  active	
  and	
  accessible	
  regions	
  

	
  
Supplementary Table 4: DEEP-FANTOM5 and DEEP-VISTA feature set description  

Category	
   Number	
  of	
  features	
   Description	
  
Di-­‐nucleotide	
  frequency	
   16	
   XY	
  where	
  X,Y	
  ε	
  {A,C,G,T}	
  	
  
Tri-­‐nucleotide	
  frequency	
   64	
   XYZ	
  where	
  X,Y,Z	
  ε	
  {A,C,G,T}	
  

Tetra-­‐nucleotide	
  frequency	
   256	
   XYZK	
  where	
  X,Y,Z,K	
  ε	
  {A,C,G,T}	
  	
  
Single	
  Base	
  frequencies	
   4	
   X	
  	
  where	
  X	
  ε	
  {A,C,G,T}	
  
Aggregate	
  frequencies	
   2	
   A+T,	
  C+G	
  

Base	
  pairs	
   1	
   The	
  number	
  of	
  base	
  pairs	
  in	
  the	
  
sequence	
  

Length	
  of	
  sequence	
   1	
   The	
  actual	
  length	
  of	
  the	
  
sequence	
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GpC	
  islands	
   1	
   GC/(sum(C)*sum(G)*length)	
  
Miscellaneous	
  	
   6	
   1.	
  |sum(C)-­‐sum(G)|/base	
  pairs	
  

2.	
  |sum(A)-­‐sum(T)|/base	
  pairs	
  
3.	
  sum(A)/sum(T)	
  
4.	
  sum(C)/sum(G)	
  
5.	
  (sum(G)*sum(C)	
  )/length	
  	
  
6.	
  (sum(A)*sum(T))/length	
  

	
  
	
  
Supplementary Table 5: ENCODE cell-line specific relevant feature subsets	
  

ENCODE	
  data	
  
	
  

H2az	
   H3K4me1	
   H3K4me2	
   H3K4me3	
   H3K9ac	
   H3K9me3	
   H3K20me1	
   H3K27ac	
   H3K27me3	
   H3K36me3	
   H3K79me2	
  

Gm12878	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

H1	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

Hep	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

Huvec	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

Hela	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

K562	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
  
	
  
Supplementary Table 6: Performance of Gm12878 cell-line ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

Gm12878	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   94.41	
   78.55	
   95.99	
   86.78	
   66.84	
   97.82	
  
20-­‐80	
   94.37	
   86.64	
   95.08	
   90.76	
   64.31	
   98.68	
  
30-­‐70	
   94.35	
   87.78	
   95.00	
   91.31	
   63.90	
   98.73	
  
40-­‐60	
   94.33	
   87.29	
   95.04	
   91.07	
   63.96	
   98.68	
  
50-­‐50	
   94.36	
   86.56	
   95.14	
   90.73	
   64.25	
   98.61	
  

	
  
Supplementary Table 7: Performance of H1 cell-line ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

H1	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   92.36	
   70.05	
   94.59	
   81.20	
   58.62	
   96.95	
  
20-­‐80	
   92.60	
   72.87	
   94.58	
   82.96	
   58.42	
   97.22	
  
30-­‐70	
   92.39	
   74.54	
   94.18	
   83.74	
   57.07	
   97.37	
  
40-­‐60	
   92.33	
   75.72	
   93.99	
   84.32	
   56.47	
   97.49	
  
50-­‐50	
   92.46	
   74.32	
   94.13	
   83.64	
   57.01	
   97.40	
  

	
  
	
  
Supplementary Table 8: Performance of Hep cell-line ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples. 

Hep	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   94.28	
   75.20	
   96.18	
   84.98	
   67.09	
   97.49	
  
20-­‐80	
   94.42	
   79.11	
   95.95	
   87.09	
   66.65	
   97.87	
  
30-­‐70	
   94.41	
   81.13	
   95.73	
   88.11	
   65.92	
   98.07	
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40-­‐60	
   94.32	
   82.69	
   95.49	
   88.83	
   65.02	
   98.22	
  
50-­‐50	
   94.31	
   83.65	
   95.37	
   89.29	
   64.69	
   98.32	
  

	
  
	
  
Supplementary Table 9: Performance of heart tissue ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

Heart	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   74.62	
   73.09	
   74.77	
   73.88	
   22.69	
   96.53	
  
20-­‐80	
   77.18	
   79.11	
   76.99	
   77.96	
   26.52	
   97.37	
  
30-­‐70	
   78.36	
   71.94	
   79.00	
   75.37	
   25.49	
   96.58	
  
40-­‐60	
   82.15	
   80.23	
   82.43	
   81.15	
   32.83	
   97.67	
  
50-­‐50	
   82.47	
   76.26	
   83.09	
   79.46	
   33.59	
   97.24	
  

	
  
Supplementary Table 10: Performance of brain tissue ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

Brain	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   80.30	
   79.17	
   80.41	
   79.66	
   30.56	
   97.49	
  
20-­‐80	
   82.75	
   82.92	
   82.73	
   82.70	
   34.86	
   97.99	
  
30-­‐70	
   80.99	
   85.50	
   80.54	
   82.91	
   31.86	
   98.24	
  
40-­‐60	
   85.28	
   83.21	
   85.49	
   84.25	
   38.34	
   98.08	
  
50-­‐50	
   85.72	
   79.72	
   86.32	
   82.85	
   39.41	
   97.71	
  

	
  
Supplementary Table 11: Performance of liver tissue ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

Liver	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   62.79	
   79.73	
   61.11	
   67.59	
   18.94	
   97.13	
  
20-­‐80	
   66.97	
   82.54	
   65.42	
   73.02	
   20.19	
   97.44	
  
30-­‐70	
   73.50	
   78.45	
   73.01	
   75.53	
   22.82	
   97.19	
  
40-­‐60	
   74.49	
   74	
   75.54	
   74.13	
   22.60	
   96.68	
  
50-­‐50	
   75.58	
   66.90	
   76.45	
   71.47	
   22.23	
   95.86	
  

	
  
Supplementary Table 12: ‘Genuine‘ enhancer regions that are common across the DEEP-

ENCODE training sets of different cell-lines. We report actual number of bases. In the 

parenthesis we report number of bins. 

	
   Gm12878	
   H1	
   Hep	
   Huvec	
   Hela	
   K562	
  
Gm12878	
   	
   117,029	
  (584)	
   180,951	
  (904)	
   709,768	
  (3,548)	
   363,800	
  (1,819)	
   549,730	
  (2,748)	
  

H1	
   117,029	
  (584)	
   	
   100,574	
  (502)	
   347,190	
  (1,735)	
   164,418	
  (822)	
   206,446	
  (1,032)	
  
Hep	
   180,951	
  (904)	
   100,574	
  (502)	
   	
   543,860	
  (2,719)	
   435,754	
  (2,178)	
   335,601	
  (1,678)	
  

Huvec	
   709,768	
  (3,548)	
   347,190	
  (1,735)	
  	
   543,860	
  (2,719)	
   	
   1,883,208	
  (9,416)	
   1,115,166	
  (5,575)	
  
Hela	
   363,800	
  (1,819)	
   164,418	
  (822)	
   435,754	
  (2,178)	
   1,883,208	
  (9,416)	
   	
   760,515	
  (3,802)	
  
K562	
   549,730	
  (2,748)	
   206,446	
  (1,032)	
   335,601	
  (1,678)	
   1,115,166	
  (5,575)	
   760,515	
  (3,802)	
   	
  

	
  
	
  
Supplementary Table 13: ‘Genuine‘ enhancer regions common across the DEEP-FANTOM5 

training sets of different tissues. We report actual number of samples. The last column also 
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provided the accuracy of DEEP-FANTOM5 model tested on the original enhancer regions 

(without the filtering) 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
 

 

 

	
  
 

 

 

 

 

 

 

Supplementary Table 14: Performance of H1 cell-line ensemble model using 351 sequence 
characteristics and different portions of training and testing samples. In the first column we 
report % portion of training and % portion of testing samples.  

H1	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   0.8736	
   0.0948	
   0.9515	
   0.2621	
   0.3164	
   0.9132	
  
20-­‐80	
   	
  0.8621	
  	
  	
  	
  	
   	
  0.1246	
  	
  	
  	
  	
   	
  0.9359	
  	
  	
  	
  	
   	
  0.3415	
  	
  	
  	
  	
   	
  0.1627	
  	
  	
  	
  	
   0.9145	
  
30-­‐70	
   0.8704	
   0.1026	
   0.9472	
   0.2865	
   0.2569	
   0.9135	
  
40-­‐60	
   0.8684	
   0.1091	
   0.9443	
   0.2997	
   0.2269	
   0.9138	
  
50-­‐50	
   0.8650	
   0.1165	
   0.9399	
   0.3129	
   0.2007	
   0.9142	
  

 
Supplementary Table 15: Performance of H1 cell-line ensemble model using all features 
(362) and different portions of training and testing samples. In the first column we report % 
portion of training and % portion of testing samples.  

H1	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   0.8904	
   0.0558	
   0.9739	
   0.1943	
   0.5039	
   0.9117	
  
20-­‐80	
   	
   0.8909	
  	
  	
  	
  	
  	
   0.0727	
  	
  	
  	
  	
  	
   0.9727	
  	
  	
  	
  	
  	
   0.2295	
  	
   0.5001	
   0.9130	
  
30-­‐70	
   0.8944	
   0.0844	
   0.9754	
   0.2663	
   0.4960	
   0.9142	
  
40-­‐60	
   0.8971	
   0.1004	
   0.9768	
   0.2956	
   0.5135	
   0.9157	
  
50-­‐50	
   0.8972	
   0.1249	
   0.9744	
   0.3315	
   0.5110	
  	
  	
   0.9178	
  

 
 

Tissue	
   Original	
  enhancer	
  regions	
   Enhancer	
  regions	
  non-­‐overlapped	
  	
  
with	
  data	
  used	
  for	
  training	
  

adipose	
   108	
   58	
  
Blood	
  vessel	
   158	
   64	
  
Esophagus	
   134	
   80	
  

Female	
  gonad	
   90	
   43	
  
Gallbladder	
   81	
   48	
  

Internal	
  male	
  genitalia	
   168	
   118	
  
Large	
  intestine	
   209	
   59	
  

Lymph	
   30	
   17	
  
Meninx	
   97	
   41	
  

Olfactory	
  region	
   11	
   1	
  
Pancreas	
   35	
   6	
  
Parotid	
   26	
   13	
  
Pennis	
   21	
   11	
  

Placenta	
   92	
   64	
  
Prostate	
   115	
   69	
  
Salivary	
   59	
   26	
  

Skeletal	
  muscle	
   95	
   35	
  
Skin	
  of	
  body	
   20	
   6	
  

Small	
  intestine	
   143	
   86	
  
Smooth	
  muscle	
   66	
   23	
  

Spinal	
  cord	
  	
   42	
   7	
  
Spleen	
   277	
   169	
  

Stomach	
   20	
   4	
  
Submandibular	
   38	
   18	
  

Testis	
   644	
   518	
  
Throat	
   125	
   40	
  
Thymus	
   347	
   278	
  
Thyroid	
   142	
   72	
  
Tongue	
   133	
   83	
  
Tonsil	
   146	
   82	
  

Umbical	
   10	
   6	
  
Urinary	
  bladder	
   105	
   61	
  

Uterus	
   157	
   84	
  
Vagina	
   62	
   32	
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Supplementary Table 16: Performance of Hep cell-line ensemble model using 351 
sequence characteristics and different portions of training and testing samples. In the first 
column we report % portion of training and % portion of testing samples.  

Hep	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   0.9066	
   0.0007	
   0.9972	
   0.0083	
   0.0633	
   0.9089	
  
20-­‐80	
   0.9070	
   0.0015	
   0.9975	
   0.0123	
   0.0733	
   0.9090	
  
30-­‐70	
   0.9038	
   0.0070	
   0.9934	
   0.0348	
   0.0813	
   0.9091	
  
40-­‐60	
   0.8955	
   0.0203	
   0.9830	
   0.0812	
   0.0879	
   0.9094	
  
50-­‐50	
   0.8771	
   0.0571	
   0.9591	
   0.2341	
   0.1225	
   	
  	
  0.9105	
  

	
  
Supplementary Table 17: Performance of Hep cell-line ensemble model using all features 
(362) and different portions of training and testing samples. In the first column we report % 
portion of training and % portion of testing samples.  

Hep	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   0.9084	
   0.0002	
   0.9993	
   0.0058	
   0.1208	
   0.9090	
  
20-­‐80	
   0.9093	
   0.0095	
   0.9993	
   0.0427	
   0.2372	
   0.9098	
  
30-­‐70	
   0.8476	
   0.2524	
   0.9071	
   0.4785	
   0.2137	
   0.9239	
  
40-­‐60	
   0.8567	
   0.5035	
   0.8920	
   0.6702	
  	
  	
  	
   0.3180	
   0.9473	
  
50-­‐50	
   0.8794	
   0.4388	
   0.9235	
   0.6366	
   0.3644	
   0.9427	
  

	
  
Supplementary Table 18: Performance of Gm12878 cell-line ensemble model using 351 
sequence characteristics and different portions of training and testing samples. In the first 
column we report % portion of training and % portion of testing samples.  

Gm12878	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   0.8354	
   0.2354	
   0.8954	
   0.4485	
   0.1846	
   0.9215	
  
20-­‐80	
   0.8274	
   0.3000	
   0.8801	
   0.5138	
   0.2001	
   0.9263	
  
30-­‐70	
   0.8272	
   0.2993	
   0.8800	
   0.5132	
   0.1997	
   0.9262	
  
40-­‐60	
   0.8276	
   0.2998	
   0.8804	
   0.5138	
   0.2004	
   0.9263	
  
50-­‐50	
   0.8268	
   0.3007	
   0.8795	
   0.5143	
   0.1997	
   0.9263	
  	
  	
  

	
  
 Supplementary Table 19: Performance of Gm12878 cell-line ensemble model using all 
features (362) and different portions of training and testing samples. In the first column we 
report % portion of training and % portion of testing samples.  

Gm12878	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   0.8891	
   0.1872	
   0.9593	
   0.4155	
   0.4079	
   0.9219	
  
20-­‐80	
   0.9080	
   0.2547	
   0.9724	
   0.5037	
   0.5815	
   0.9298	
  
30-­‐70	
   0.9076	
   0,3278	
   0.9655	
   0.5549	
   0.6037	
   0.9352	
  
40-­‐60	
   0.9224	
   0.3600	
   0.9786	
   0.5936	
   0.6274	
   0.9386	
  
50-­‐50	
   0.9223	
   0.3447	
   0.9800	
   0.5812	
   0.6330	
   0.9373	
  	
  	
  

	
  
	
  

Supplementary Table 20: Performance of DEEP-VISTA model using 351 sequence 
characteristics and different portions of training and testing samples. In the first column we 
report % portion of training and % portion of testing samples.  

Gm12878	
   ACC	
   SEN	
   SPE	
   GM	
   PPV	
   NPV	
  
10-­‐90	
   0.8446	
   0.8390	
   0.8451	
   0.8420	
   0.3504	
   0.9814	
  
20-­‐80	
   0.8403	
   0.8464	
   0.8397	
   0.8430	
   0.3452	
   0.9821	
  
30-­‐70	
   0.8379	
   0.8450	
   0.8372	
   0.8410	
   0.3415	
   0.9818	
  
40-­‐60	
   0.8364	
   0.8343	
   0.8366	
   0.8354	
   0.3379	
   0.9806	
  
50-­‐50	
   0.8375	
   0.8409	
   0.8372	
   0.8390	
   0.3406	
   0.9814	
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Supplementary Table 21: Promoter Overlap Fraction in actual number of bases using well-

known TSS and Pol II ChIP-Seq data. In the parenthesis we report % fraction. 

Program	
   Percentage	
  of	
  predicted	
  
enhancer	
  bases	
  with	
  TSS+Pol	
  II	
  

regions	
  in	
  Hela	
  

Percentage	
  of	
  predicted	
  
enhancer	
  bases	
  with	
  TSS+Pol	
  II	
  

regions	
  in	
  K562	
  
DEEP-­‐

ENCODE	
   2,305	
  (0.97%)	
   3,177	
  (1.12%)	
  

CSI-­‐ANN	
   4,967	
  (1.85%)	
   4,342	
  (1.25%)	
  
RFECS	
   216	
  (0.02%)	
   334	
  (0.02%)	
  

ChromHMM	
   78	
  (0.01%)	
   61	
  (0.001%)	
  
Segway	
   2,040	
  (0.16%)	
   2,719	
  (0.09%)	
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Supplementary Figure 1: ROC curve for DEEP-ENCODE model with voting in the final layer. 

For convenience we plot the same ROC curve using the ANN decision-making mechanism. 

	
  

Supplementary Figure 2: Precision-Recall curves for individual cell-line models. 
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Supplementary Figure 3: Evaluating performance of the studied programs in Hela cell-line 

using different thresholds for the predicted bases. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with p300 ChIP-Seq peaks.  

	
  

Supplementary Figure 4: Evaluating performance of the studied programs in Hela cell-line 

using different thresholds for the predicted bases. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with DHS ChIP-Seq peaks.  
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Supplementary Figure 5: Evaluating performance of the studied programs in K562 cell-line 

using different thresholds for the predicted bases. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with p300 ChIP-Seq peaks.  

Supplementary Figure 6: Evaluating performance of the studied programs in K562 cell-line 

using different thresholds for the predicted bases. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with DHS ChIP-Seq peaks.  
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Supplementary Figure 7: Evaluating performance of the studied programs in Hela cell-line 

using overlap with ‘gold-standard’ enhancers. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with genome-wide predictions.  

Supplementary Figure 8: Evaluating performance of the studied programs in K562 cell-line 

using overlap with ‘gold-standard’ enhancers. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with genome-wide predictions.  

	
  


