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SUPPLEMENTARY	  MATERIAL	  

Selection of cell-lines and tissues: Number of positive and negative samples  
In ENCODE repository there are 6 cell-lines from tier 1 and tier 2 experiments that are 
characterized by the same 11 histone mark data (with the exception of H3K9me1). For the 
training of our model we chose randomly 2 cell-lines from tier 1 experiments and other 2 from 
tier 2. These 4 cell-lines are: Gm12878, H1-Hesc, Hep-G2 and Huvec. The other two cell-
lines, K562 (tier 1) and Hela (tier 2), are used for testing. We did not extend our experiments 
to tier 3 data since these data are of much lower quality. For these 6 cell-lines annotation 
maps from Hoffman et al 2013 are available. The number of positive and negative bins is 
presented in Supplementary Table 1.  
 
DEEP-FANTOM5 component implements tissue-specific models coming from different 
FANTOM5 tissues. Specifically, we chose 5 tissues from vital organs for training. All other 
were used for testing. Supplementary Table 2 presents the number of positive samples as 
well as characteristics related to these tissue-specific candidate enhancer regions. Note that 
for the number of negative samples we chose 10 times the number of positive regions and we 
created tissue-specific negative datasets. During the negative dataset generation we 
preserved the positive dataset distribution meaning that we constructed negative samples 
randomly with the same minimum, maximum and mean length as the positive enhancer 
regions.  
	  
Selecting relevant features  
To build efficient models usually requires removing redundant features and may result in the 
selection of a small and optimized feature set. The small number of more relevant features 
can sometimes improve the prediction performance of the deployed models and result in 
faster, more reliable and more cost-effective classification. For the DEEP-ENCODE model, 
we initially tested the classification performance using three different feature subsets. One 
subset consisting of 11 histone marks, the other one that contains 351 sequence-derived 
attributes, and the third that contains all the available features (362 in total). However, when 
we used all features or when we used only the sequence-derived features we achieved much 
lower performance compared to the one obtained with feature set that contains only 11 
histone marks. For this reason the DEEP-ENCODE model is trained using this small subset 
of features. In addition, the relative small number of features (only 11 attributes) allows for the 
application of an exhaustive feature selection procedure. The exhaustive feature selection 
measures the classification performance for all possible combinations of features, which in 
our case are 2048 combinations.   
 
For each cell-line we chose randomly 20% of the original data (we preserved the ratio 1:10 
between positive and negative classes) and we performed classification using the same 
algorithm as the one deployed in DEEP-ENCODE component. We chose the combination of 
features that maximizes the geometric mean (GM) of sensitivity and specificity. 
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Supplementary Table 5 presents the results. Note that the whole process of exhaustive 
search took around 7 days to finish (sequential implementation in a Intel Xeon 2.5 GHz 
workstation). 
	  
A closer look to the previous feature subsets shows that different sets of features appear 
optimal for different cell-lines. We also observe that attribute H3K4me1 is always selected. 
This is consistent with the experimental evidence that associate this histone mark with 
enhancers. Apart from that, H3K9ac is selected in 5 out of 6 cell-lines, whereas H3K4me2, 
H3K4me3 and H3K36me3 are selected in 4 out of 6 cell-lines.   
	  
For the DEEP-FANTOM5 component it was impossible to perform exhaustive search over 
351 characteristics. Instead of that, we utilized a wrapper-based feature selection tool 
(http://www.cbrc.kaust.edu.sa/dwfs/ that utilizes a GA for identifying relevant features. We 
chose the default setting and we selected features using Naïve Bayes classifier since it is 
much faster than other classification techniques available in this tool. Similarly to the DEEP-
ENCODE component, selecting features for different tissues results in different relevant 
feature subsets. However, the performance we obtained using these selected features was 
always lower than using the performance achieved using the original feature vector. For this 
reason, we decided to use the original feature vector containing 351 features for the rest of 
our	   experimentation. However, identifying a more compact feature subset for this specific 
component remains a challenging task to be done in future.  
	  
Feature vector description used for exhausting search  
A description of the 11 histone marks used for exhaustive search of the best feature 
combination for DEEP-ENCODE is presented in Supplementary Table 3.  
 
Feature vector for DEEP-FANTOM5 and DEEP-VISTA 
The DEEP-FANTOM5 and DEEP-VISTA components use 351 features derived from the DNA 
sequence itself. Supplementary Table 4 describes the feature categories. Note that ChIP-seq 
histone modification data for the FANTOM5/VISTA tissues are not currently available.  
	  
Tuning the ratio between testing and training  
Since we chose the simple holdout approach (2-fold cross validation) for assessing the 
classification performance of the cell-line/tissue specific models, one important question that 
arises is how many positive and negative samples are sufficient to use for training. To resolve 
this issue we utilized an internal trial-error approach. Specifically, we performed multiple 
trainings with different ratios starting from 10% for training and 90% for testing, and 
progressively decreasing the number of testing samples (and increasing the number of 
negative). We considered the geometric mean of specificity and sensitivity and the positive 
predictive value as the most indicative performance metrics for this task. Supplementary 
Tables 6-11 presents the classification results. For DEEP-ENCODE component we observe 
that selecting the 20% of the data for training and 80% of the data for testing is most suitable 
and also the training time is reduced. Note that we were training thousands of SVM models. 
Similarly, for DEEP-FANTOM5 component we observe that 40% of the data for the training 
and 60% of the data for testing appears to be a suitable choice.  
	  
Testing the effectiveness of other decision-making mechanisms  
In the ensemble techniques, there are many ways to combine decisions from individual 
models and draw the final predictions. We experimented with the simple voting schema 
applied to the DEEP-ENCODE component as follows: First, we applied predefined thresholds 
for phases 1 and 2. We considered different proportions of voting for making a final decision 
and we reported results by applying various decision thresholds starting from 10% up 100% 
of total votes, meaning that we required at least 100, 200, 300, 400, 500, 600, 700, 800, 900, 
950, 960, 970, 980, 990 and 1000 classifiers to vote for the positive class. Supplementary 
Figure 1 presents the ROC performance curve. It becomes apparent that the ANN based 
decision mechanism is more sophisticated and has significant advantages over this simple 
voting schema. Thus, we applied the ANN decision mechanism for the experimentation 
presented in the manuscript.  
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Individual ENCODE cell-line specific models achieve poor Positive Predictive Values 
(PPV) 
In order to examine further the capabilities of models for predicting enhancers trained on 
single cell-lines, we generated Precision-Recall curves for several cell-lines and tissues. 
Supplementary figure 2 presents these results. Overall, we show that cell-specific models 
achieve inconsistent performance across different cell-lines and their precision is very low 
compared to DEEP-ENCODE component.  
	  
Classification performance of DEEP-ENCODE with different feature subsets 
To measure the effectiveness of different feature subsets used for the DEEP-ENCODE model, 
we calculated the average classification performance achieved using sequence-derived 
features and feature set that contains all the 362 attributes. We also measured the 
performance using different ratios of positive and negative samples. Supplementary Tables 
14,15,16,17,18,19 present these results.  
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TABLES	  AND	  FIGURE	  LEGENDS	  
	  
Supplementary Table 1: Number of positive and negative training samples/bins per 

ENCODE cell-line 

Cell-‐line	   Number	  of	  negative	  bins	  	   Number	  of	  positive	  bins	  
Gm12878	   1,936,200	   193,620	  

H1	   809,800	   80,980	  
Hep	   1,397,700	   138,770	  

Huvec	   3,283,000	   328,300	  
	  
	  
Supplementary Table 2: Number of positive and negative training samples for FANTOM5 

tissues used for training. 

Tissue	   Number	  of	  positive	  
samples	  	  

Number	  of	  negative	  
samples	  

Min	  
length	  	  

Max	  
length	  	  

Mean	  
length	  	  

Kidney	   124	   1,240	   30	   1367	   327.24	  
Heart	   295	   2950	   18	   1594	   387.05	  
Lung	   217	   2,170	   48	   1541	   358.56	  
Liver	   84	   840	   59	   1471	   371.32	  
Brain	   639	   6390	   18	   1594	   394.76	  
	  
	  
Supplementary Table 3: Description of histone modification marks 

Histone	  modification	  	   Brief	  Description	  

H2AFZ	   Variant	  of	  H2A	  
H3K27ac	   Detects	  Acetylation	  

H3K27me3	   Detects	  trimethylation	  of	  Lysine	  27	  
H3K36me3	   Marks	  actively	  transcribed	  regions	  
H3K4me1	   Associated	  with	  enhancers	  
H3K4me2	   Marks	  promoters	  and	  enhancers	  
H3K4me3	   Associated	  with	  active	  promoters	  
H3K79me2	   Marks	  transcriptional	  transition	  regions	  

H3K9ac	   Marks	  promoters	  in	  chromatin	  regions	  
H3K9me3	   Associated	  with	  silenced	  chromatin	  	  
H4K20me1	   Associated	  with	  active	  and	  accessible	  regions	  

	  
Supplementary Table 4: DEEP-FANTOM5 and DEEP-VISTA feature set description  

Category	   Number	  of	  features	   Description	  
Di-‐nucleotide	  frequency	   16	   XY	  where	  X,Y	  ε	  {A,C,G,T}	  	  
Tri-‐nucleotide	  frequency	   64	   XYZ	  where	  X,Y,Z	  ε	  {A,C,G,T}	  

Tetra-‐nucleotide	  frequency	   256	   XYZK	  where	  X,Y,Z,K	  ε	  {A,C,G,T}	  	  
Single	  Base	  frequencies	   4	   X	  	  where	  X	  ε	  {A,C,G,T}	  
Aggregate	  frequencies	   2	   A+T,	  C+G	  

Base	  pairs	   1	   The	  number	  of	  base	  pairs	  in	  the	  
sequence	  

Length	  of	  sequence	   1	   The	  actual	  length	  of	  the	  
sequence	  
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GpC	  islands	   1	   GC/(sum(C)*sum(G)*length)	  
Miscellaneous	  	   6	   1.	  |sum(C)-‐sum(G)|/base	  pairs	  

2.	  |sum(A)-‐sum(T)|/base	  pairs	  
3.	  sum(A)/sum(T)	  
4.	  sum(C)/sum(G)	  
5.	  (sum(G)*sum(C)	  )/length	  	  
6.	  (sum(A)*sum(T))/length	  

	  
	  
Supplementary Table 5: ENCODE cell-line specific relevant feature subsets	  

ENCODE	  data	  
	  

H2az	   H3K4me1	   H3K4me2	   H3K4me3	   H3K9ac	   H3K9me3	   H3K20me1	   H3K27ac	   H3K27me3	   H3K36me3	   H3K79me2	  

Gm12878	   	   	   	   	   	   	   	   	   	   	   	  

H1	   	   	   	   	   	   	   	   	   	   	   	  

Hep	   	   	   	   	   	   	   	   	   	   	   	  

Huvec	   	   	   	   	   	   	   	   	   	   	   	  

Hela	   	   	   	   	   	   	   	   	   	   	   	  

K562	   	   	   	   	   	   	   	   	   	   	   	  

	  
	  
Supplementary Table 6: Performance of Gm12878 cell-line ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

Gm12878	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   94.41	   78.55	   95.99	   86.78	   66.84	   97.82	  
20-‐80	   94.37	   86.64	   95.08	   90.76	   64.31	   98.68	  
30-‐70	   94.35	   87.78	   95.00	   91.31	   63.90	   98.73	  
40-‐60	   94.33	   87.29	   95.04	   91.07	   63.96	   98.68	  
50-‐50	   94.36	   86.56	   95.14	   90.73	   64.25	   98.61	  

	  
Supplementary Table 7: Performance of H1 cell-line ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

H1	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   92.36	   70.05	   94.59	   81.20	   58.62	   96.95	  
20-‐80	   92.60	   72.87	   94.58	   82.96	   58.42	   97.22	  
30-‐70	   92.39	   74.54	   94.18	   83.74	   57.07	   97.37	  
40-‐60	   92.33	   75.72	   93.99	   84.32	   56.47	   97.49	  
50-‐50	   92.46	   74.32	   94.13	   83.64	   57.01	   97.40	  

	  
	  
Supplementary Table 8: Performance of Hep cell-line ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples. 

Hep	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   94.28	   75.20	   96.18	   84.98	   67.09	   97.49	  
20-‐80	   94.42	   79.11	   95.95	   87.09	   66.65	   97.87	  
30-‐70	   94.41	   81.13	   95.73	   88.11	   65.92	   98.07	  



	   6	  

40-‐60	   94.32	   82.69	   95.49	   88.83	   65.02	   98.22	  
50-‐50	   94.31	   83.65	   95.37	   89.29	   64.69	   98.32	  

	  
	  
Supplementary Table 9: Performance of heart tissue ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

Heart	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   74.62	   73.09	   74.77	   73.88	   22.69	   96.53	  
20-‐80	   77.18	   79.11	   76.99	   77.96	   26.52	   97.37	  
30-‐70	   78.36	   71.94	   79.00	   75.37	   25.49	   96.58	  
40-‐60	   82.15	   80.23	   82.43	   81.15	   32.83	   97.67	  
50-‐50	   82.47	   76.26	   83.09	   79.46	   33.59	   97.24	  

	  
Supplementary Table 10: Performance of brain tissue ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

Brain	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   80.30	   79.17	   80.41	   79.66	   30.56	   97.49	  
20-‐80	   82.75	   82.92	   82.73	   82.70	   34.86	   97.99	  
30-‐70	   80.99	   85.50	   80.54	   82.91	   31.86	   98.24	  
40-‐60	   85.28	   83.21	   85.49	   84.25	   38.34	   98.08	  
50-‐50	   85.72	   79.72	   86.32	   82.85	   39.41	   97.71	  

	  
Supplementary Table 11: Performance of liver tissue ensemble model using different 

portions of training and testing samples. In the first column we report % portion of training 

and % portion of testing samples.  

Liver	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   62.79	   79.73	   61.11	   67.59	   18.94	   97.13	  
20-‐80	   66.97	   82.54	   65.42	   73.02	   20.19	   97.44	  
30-‐70	   73.50	   78.45	   73.01	   75.53	   22.82	   97.19	  
40-‐60	   74.49	   74	   75.54	   74.13	   22.60	   96.68	  
50-‐50	   75.58	   66.90	   76.45	   71.47	   22.23	   95.86	  

	  
Supplementary Table 12: ‘Genuine‘ enhancer regions that are common across the DEEP-

ENCODE training sets of different cell-lines. We report actual number of bases. In the 

parenthesis we report number of bins. 

	   Gm12878	   H1	   Hep	   Huvec	   Hela	   K562	  
Gm12878	   	   117,029	  (584)	   180,951	  (904)	   709,768	  (3,548)	   363,800	  (1,819)	   549,730	  (2,748)	  

H1	   117,029	  (584)	   	   100,574	  (502)	   347,190	  (1,735)	   164,418	  (822)	   206,446	  (1,032)	  
Hep	   180,951	  (904)	   100,574	  (502)	   	   543,860	  (2,719)	   435,754	  (2,178)	   335,601	  (1,678)	  

Huvec	   709,768	  (3,548)	   347,190	  (1,735)	  	   543,860	  (2,719)	   	   1,883,208	  (9,416)	   1,115,166	  (5,575)	  
Hela	   363,800	  (1,819)	   164,418	  (822)	   435,754	  (2,178)	   1,883,208	  (9,416)	   	   760,515	  (3,802)	  
K562	   549,730	  (2,748)	   206,446	  (1,032)	   335,601	  (1,678)	   1,115,166	  (5,575)	   760,515	  (3,802)	   	  

	  
	  
Supplementary Table 13: ‘Genuine‘ enhancer regions common across the DEEP-FANTOM5 

training sets of different tissues. We report actual number of samples. The last column also 
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provided the accuracy of DEEP-FANTOM5 model tested on the original enhancer regions 

(without the filtering) 

	  
	  
	  
	  
	  
	  
	  
 

 

 

	  
 

 

 

 

 

 

 

Supplementary Table 14: Performance of H1 cell-line ensemble model using 351 sequence 
characteristics and different portions of training and testing samples. In the first column we 
report % portion of training and % portion of testing samples.  

H1	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   0.8736	   0.0948	   0.9515	   0.2621	   0.3164	   0.9132	  
20-‐80	   	  0.8621	  	  	  	  	   	  0.1246	  	  	  	  	   	  0.9359	  	  	  	  	   	  0.3415	  	  	  	  	   	  0.1627	  	  	  	  	   0.9145	  
30-‐70	   0.8704	   0.1026	   0.9472	   0.2865	   0.2569	   0.9135	  
40-‐60	   0.8684	   0.1091	   0.9443	   0.2997	   0.2269	   0.9138	  
50-‐50	   0.8650	   0.1165	   0.9399	   0.3129	   0.2007	   0.9142	  

 
Supplementary Table 15: Performance of H1 cell-line ensemble model using all features 
(362) and different portions of training and testing samples. In the first column we report % 
portion of training and % portion of testing samples.  

H1	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   0.8904	   0.0558	   0.9739	   0.1943	   0.5039	   0.9117	  
20-‐80	   	   0.8909	  	  	  	  	  	   0.0727	  	  	  	  	  	   0.9727	  	  	  	  	  	   0.2295	  	   0.5001	   0.9130	  
30-‐70	   0.8944	   0.0844	   0.9754	   0.2663	   0.4960	   0.9142	  
40-‐60	   0.8971	   0.1004	   0.9768	   0.2956	   0.5135	   0.9157	  
50-‐50	   0.8972	   0.1249	   0.9744	   0.3315	   0.5110	  	  	   0.9178	  

 
 

Tissue	   Original	  enhancer	  regions	   Enhancer	  regions	  non-‐overlapped	  	  
with	  data	  used	  for	  training	  

adipose	   108	   58	  
Blood	  vessel	   158	   64	  
Esophagus	   134	   80	  

Female	  gonad	   90	   43	  
Gallbladder	   81	   48	  

Internal	  male	  genitalia	   168	   118	  
Large	  intestine	   209	   59	  

Lymph	   30	   17	  
Meninx	   97	   41	  

Olfactory	  region	   11	   1	  
Pancreas	   35	   6	  
Parotid	   26	   13	  
Pennis	   21	   11	  

Placenta	   92	   64	  
Prostate	   115	   69	  
Salivary	   59	   26	  

Skeletal	  muscle	   95	   35	  
Skin	  of	  body	   20	   6	  

Small	  intestine	   143	   86	  
Smooth	  muscle	   66	   23	  

Spinal	  cord	  	   42	   7	  
Spleen	   277	   169	  

Stomach	   20	   4	  
Submandibular	   38	   18	  

Testis	   644	   518	  
Throat	   125	   40	  
Thymus	   347	   278	  
Thyroid	   142	   72	  
Tongue	   133	   83	  
Tonsil	   146	   82	  

Umbical	   10	   6	  
Urinary	  bladder	   105	   61	  

Uterus	   157	   84	  
Vagina	   62	   32	  
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Supplementary Table 16: Performance of Hep cell-line ensemble model using 351 
sequence characteristics and different portions of training and testing samples. In the first 
column we report % portion of training and % portion of testing samples.  

Hep	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   0.9066	   0.0007	   0.9972	   0.0083	   0.0633	   0.9089	  
20-‐80	   0.9070	   0.0015	   0.9975	   0.0123	   0.0733	   0.9090	  
30-‐70	   0.9038	   0.0070	   0.9934	   0.0348	   0.0813	   0.9091	  
40-‐60	   0.8955	   0.0203	   0.9830	   0.0812	   0.0879	   0.9094	  
50-‐50	   0.8771	   0.0571	   0.9591	   0.2341	   0.1225	   	  	  0.9105	  

	  
Supplementary Table 17: Performance of Hep cell-line ensemble model using all features 
(362) and different portions of training and testing samples. In the first column we report % 
portion of training and % portion of testing samples.  

Hep	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   0.9084	   0.0002	   0.9993	   0.0058	   0.1208	   0.9090	  
20-‐80	   0.9093	   0.0095	   0.9993	   0.0427	   0.2372	   0.9098	  
30-‐70	   0.8476	   0.2524	   0.9071	   0.4785	   0.2137	   0.9239	  
40-‐60	   0.8567	   0.5035	   0.8920	   0.6702	  	  	  	   0.3180	   0.9473	  
50-‐50	   0.8794	   0.4388	   0.9235	   0.6366	   0.3644	   0.9427	  

	  
Supplementary Table 18: Performance of Gm12878 cell-line ensemble model using 351 
sequence characteristics and different portions of training and testing samples. In the first 
column we report % portion of training and % portion of testing samples.  

Gm12878	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   0.8354	   0.2354	   0.8954	   0.4485	   0.1846	   0.9215	  
20-‐80	   0.8274	   0.3000	   0.8801	   0.5138	   0.2001	   0.9263	  
30-‐70	   0.8272	   0.2993	   0.8800	   0.5132	   0.1997	   0.9262	  
40-‐60	   0.8276	   0.2998	   0.8804	   0.5138	   0.2004	   0.9263	  
50-‐50	   0.8268	   0.3007	   0.8795	   0.5143	   0.1997	   0.9263	  	  	  

	  
 Supplementary Table 19: Performance of Gm12878 cell-line ensemble model using all 
features (362) and different portions of training and testing samples. In the first column we 
report % portion of training and % portion of testing samples.  

Gm12878	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   0.8891	   0.1872	   0.9593	   0.4155	   0.4079	   0.9219	  
20-‐80	   0.9080	   0.2547	   0.9724	   0.5037	   0.5815	   0.9298	  
30-‐70	   0.9076	   0,3278	   0.9655	   0.5549	   0.6037	   0.9352	  
40-‐60	   0.9224	   0.3600	   0.9786	   0.5936	   0.6274	   0.9386	  
50-‐50	   0.9223	   0.3447	   0.9800	   0.5812	   0.6330	   0.9373	  	  	  

	  
	  

Supplementary Table 20: Performance of DEEP-VISTA model using 351 sequence 
characteristics and different portions of training and testing samples. In the first column we 
report % portion of training and % portion of testing samples.  

Gm12878	   ACC	   SEN	   SPE	   GM	   PPV	   NPV	  
10-‐90	   0.8446	   0.8390	   0.8451	   0.8420	   0.3504	   0.9814	  
20-‐80	   0.8403	   0.8464	   0.8397	   0.8430	   0.3452	   0.9821	  
30-‐70	   0.8379	   0.8450	   0.8372	   0.8410	   0.3415	   0.9818	  
40-‐60	   0.8364	   0.8343	   0.8366	   0.8354	   0.3379	   0.9806	  
50-‐50	   0.8375	   0.8409	   0.8372	   0.8390	   0.3406	   0.9814	  	  
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Supplementary Table 21: Promoter Overlap Fraction in actual number of bases using well-

known TSS and Pol II ChIP-Seq data. In the parenthesis we report % fraction. 

Program	   Percentage	  of	  predicted	  
enhancer	  bases	  with	  TSS+Pol	  II	  

regions	  in	  Hela	  

Percentage	  of	  predicted	  
enhancer	  bases	  with	  TSS+Pol	  II	  

regions	  in	  K562	  
DEEP-‐

ENCODE	   2,305	  (0.97%)	   3,177	  (1.12%)	  

CSI-‐ANN	   4,967	  (1.85%)	   4,342	  (1.25%)	  
RFECS	   216	  (0.02%)	   334	  (0.02%)	  

ChromHMM	   78	  (0.01%)	   61	  (0.001%)	  
Segway	   2,040	  (0.16%)	   2,719	  (0.09%)	  
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Supplementary Figure 1: ROC curve for DEEP-ENCODE model with voting in the final layer. 

For convenience we plot the same ROC curve using the ANN decision-making mechanism. 

	  

Supplementary Figure 2: Precision-Recall curves for individual cell-line models. 
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Supplementary Figure 3: Evaluating performance of the studied programs in Hela cell-line 

using different thresholds for the predicted bases. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with p300 ChIP-Seq peaks.  

	  

Supplementary Figure 4: Evaluating performance of the studied programs in Hela cell-line 

using different thresholds for the predicted bases. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with DHS ChIP-Seq peaks.  
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Supplementary Figure 5: Evaluating performance of the studied programs in K562 cell-line 

using different thresholds for the predicted bases. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with p300 ChIP-Seq peaks.  

Supplementary Figure 6: Evaluating performance of the studied programs in K562 cell-line 

using different thresholds for the predicted bases. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with DHS ChIP-Seq peaks.  
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Supplementary Figure 7: Evaluating performance of the studied programs in Hela cell-line 

using overlap with ‘gold-standard’ enhancers. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with genome-wide predictions.  

Supplementary Figure 8: Evaluating performance of the studied programs in K562 cell-line 

using overlap with ‘gold-standard’ enhancers. For all the studied programs we sample 

randomly 5M (M stands for millions), 10M, 15M and 20M predictions and we report overlap 

with genome-wide predictions.  

	  


