
Supplemental Material 

Comparing model structures 

To illustrate the importance of model choice, we compare two alternative models of mRNA 

dynamics. One model is highly simplified and considers continuous (‘constitutive’) mRNA 

production, first-order maturation and first-order degradation (Fig. S4A). It is described by 

the following equations:  
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Fig. S4 shows the pre-mRNA species (x
pro

, G-I, dotted) and mature mRNA (x
mat

, D-F, 

dotted). 

The second model takes into account a multi-step promoter cycle, mRNA maturation and 

degradation (Fig. S4C). Here we explore a general multi-step model, which we will make 

more detailed (including explicitly elongation and splicing) in the subsequent sections for the 

purposes of data fitting. The system is described by the following set of equations: 
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The pre-mRNA species plotted in Figs. S4G-I (solid) is defined as ∑       
    and mature 

mRNA (Fig. S4D-F, solid) as ∑       
     Parameters used for the simulation of the various 

time courses are displayed in Table S2. At the start of the simulation all the variables are 0 

except for i =1:    
         

In Figs. S4D-I the time courses of the pre-mRNA and mature mRNA abundance are shown 

upon activation. The rate constants were adjusted so that the overall production, maturation 

and degradation rates and starting/ending steady state values of the mature mRNA are the 

same. Notably, for the multi-step model the dynamics vary significantly depending on the 

parameter regime, i.e. the relative rates of promoter cycling, mRNA maturation and 

degradation, but are always distinct from those of the simplified single step model. If 

degradation and maturation occur fast compared to the promoter cycling, both the mRNA and 

the pre-mRNA accumulation displays damped oscillatory dynamics for the more complicated 

model (Figs. S4D and G). This is explained by the fact that simultaneously activated cells go 

through a round of mRNA production leading to a rise and then during promoter silent 

periods part of the pre-mRNA is spliced and the mature mRNA is degraded resulting in a 

decrease (Fig. S4D). When the promoter is active again, it leads to an increase of RNA 

production and so on. In the single step model, on the other hand, the parameter regimes only 

affect the accumulation rate but not the overall form of the profile; in all cases both the pre-

mRNA and mature mRNA increase monotonously without damped oscillations (Figs. S4D-I). 

As shown above, a number of our ODE models produce damped oscillations in the dynamics 

of transcript concentrations. We emphasize that those models describe the average behaviour 

of a population of cells. Hence, it is relevant to shortly discuss some of the conditions that the 

single cells would have to obey in order for a population of them to show (damped) 

oscillatory dynamics of the average transcript concentrations. Firstly, the initial conditions of 

the cells should be close to identical when transcription is activated. Otherwise single cells 

would display different dynamics from the onset. Secondly, the cells induced at the same 

time and from similar state can stay in synchrony if the waiting times of the sequential 

processes that they carry out are ‘precise’. By precise we mean that the cells have similar 

waiting times for the same processes, such as promoter activation, transcript elongation, etc. 

This is not to be expected for first order reactions, for which the standard deviation in the 

waiting time equals the mean time; so it has a coefficient of variation (CV) of 1. Thus single 

reactions are extremely noisy and do not lead to synchrony between cells. However, when 

several (for instance, N) of those reactions are occurring in a sequence, then the waiting time 

of the complete sequence becomes much more precise: it has a coefficient of variation of 1/N. 

Therefore, multistep processes that occur in transcription initiation cycle and elongation can 

lead to passive, transient synchronisation of cells. Finally, due to small stochastic differences 

between cells – that inevitable will occur and accumulate – in all cases, the oscillations at the 

level of single cells will slowly desynchronize, which leads to dampening on the population 

levels. 



Data analysis 

We used data from two types of time course experiments: ligand activation and transcription 

inhibition (degradation). From both experimental series at each time point the Ct values of 

pre-mRNA and mature mRNA of the human ADRP gene are available as well as the Ct-

values of housekeeping control genes. The Ct-values are converted to copy numbers as 

demonstrated below. 

Let CM be the Ct value of the RNA under investigation, CH the Ct of the RNA of the 

housekeeping gene (which does not change expression during the experiment, see Fig. S1) 

and M = CM − CH. We define the expression level ’E’ as E = 2
-M , which is the expression 

level relative to that of the housekeeping gene. This procedure corrects for the technical 

variation due to sample preparation. For each data point at t > 0 we acquire an M (and a 

corresponding E) value of the experimental (ligand or inhibitor-treated) sample. This is then 

corrected by the average M of the control samples ( ̅    ) belonging to the particular repeat 

of the experiment, giving       ̅    . The fold induction R is defined as       . 

This procedure corrects for the biological variation (different cell culture) between the 

experiments. Only dM (and R) values can be compared between the experiments and not CM 

or M values. However, to estimate the copy number from the standard curve, a CM value is 

required. Thus the CM’s are calculated back using average M and CH values of all the control 

samples:   
      ̅       

̅̅̅̅   In case of t = 0 (or control samples), the calculation is 

  
      

̅̅̅̅   The copy number is provided by: 

t = 0:     
  (    ̅̅ ̅̅ ̅)

  

t > 0:     
  (   ̅̅̅       ̅̅ ̅̅ ̅)

   

where a, b, and c are component-dependent experimental constants and the bar indicates the 

mean value. The b (the Ct value, if the copy number equals 1 in the calibration experiment) 

and c (the exponential factor in the PCR, theoretically equal to -
2
log10 = -3.32) values come 

from calibration experiments that establish the relationship between Ct-values and copy 

numbers in the cDNA sample (Fig. S2). They allow determining the number for the 

respective molecule in the sample. Factor a is then used to obtain the copy number per cell as 

it is a product of the multiplication of: (i) the sample dilution factor (2,500 for mature mRNA, 

625 for pre-mRNA), (ii) the inverse cDNA synthesis efficiency coefficient (1 for mature and 

0.1 for pre-mRNA) and (iii) the inverse of the cell number in the culture (10
6
 cells per culture 

dish). The cDNA synthesis efficiency coefficients are experimentally determined using an in 

vitro synthesized RNA added in known concentration to a cDNA synthesis mixture (see 

Methods for details). The resulting cDNA copy number was measured using standard curve 

(Fig. S2D). Measured cDNA amount divided by added amount of RNA gives the cDNA 

synthesis efficiency factor. 

These factors are a = 0.00125, b = 38.70, c = -3.69 for mature mRNA (b and c are based on 



the average fit of the two calibration experiments of Fig. S2B) and a = 0.003125, b = 38.93, c 

= -3.70 (based on average fit of the calibration experiment in Fig. S2A) for the pre-mRNA 

time course experiments. 

For the ligand activation experiment we have 17 time-points for both pre-mature and mature 

mRNA, t
l 
= (0, 5, 15, (30-210), 225); for the degradation experiment we have for the pre-

mature mRNA 12 time-points, t
d,pR 

= (0, (1-9), 10, 15) and for the mature mRNA 11 time-

points, t
d,mR 

= (0, (10-60) 90, 120, 150, 180). All time-points consist of several data points (2-

13), for the initial steady state in the ligand activation experiment there are around 45 data 

points (see the column ‘n’ in Tables S3-4). 

In our fitting procedure we use the copy number data, see Tables S3, S4 and S5. 

We discuss three sources of error in the data.  

Device error: The error resulting from the measurement device. For each data point the Ct 

values measured are an average over 3 measurements. We have neglected this error as it is 

relatively small (the average standard deviation is 0.13, which would result in a ±0.1 copy 

number error for pre-mRNA and ±1.5 copy number error for mature mRNA). For 

comparison, the average standard deviation between replicas of a single time point in the 

ligand induction time course is 0.52 for pre-mRNA and 5.8 for mature mRNA. 

Conversion error: The error resulting from the conversion from Ct-values to copy numbers. 

The copy number of pre-mRNA at t = 180 min should be equal to the copy number of the 

starting value in the decay experiment for the pre-mRNA measurements. This was not the 

case in the primary data. The likely reason for this difference is that due to technical reasons 

there are several missing M values for untreated samples, which are necessary for the dM 

calculation that corrects for biological variation. Instead an average of all the available M 

values were used for dM and subsequent copynumber calculations. In case of mature mRNA 

degradation, where M values for all replicates are available, no difference between t=180 of 

ligand treatment and t=0 of the decay timecourse is observed. We have corrected for the 

discrepancy between t=180 of ligand treatment and t=0 of the decay timecourse by 

multiplying the copy numbers of the pre-mRNA decay data by a factor (0.3998) such that the 

average of the pre-mRNA ligand data at t = 180 min became equal to the average of the pre-

mRNA decay data at t = 0 of that experiment. With this corrected pre-mRNA decay data we 

fit our model and we have assumed further conversion errors to be negligible. 

Sample error: The error resulting from the variation over cells. We assume the error in the 

copy number to be independent for each measurement and to be normally distributed per time 

point. 

Plots of all time courses are presented in Figs. 2A-C. In view of the substantial noise, the 

number of data points per time point is too small to use the mean+sd as fit data. ‘Averaging’ 

the standard deviation over more time points is questionable, since for some data courses 



(mature mRNA ligand and pre-mRNA degradation) the hypothesis of no correlation between 

time points is clearly rejected (Pearson correlation between time point and standard deviation 

for the mature mRNA ligand is 0.72 and for pre-mRNA degradation -0.78). Therefore, we 

use all data points in a Least Square Estimation fitting procedure, which is a standard 

procedure for the fitting over-determined systems. Assuming a scaled constant standard 

deviation for all time point error distributions, this results in a MLE. For the scaling we used 

a factor of 10 for the mature mRNA data as there is approximately one order of magnitude 

difference between the mean values of pre-mRNA and mature mRNA. 

Mathematical models 

In the ligand activation experiment the system is assumed to be initially in steady state. Let f 

be the ratio between the steady state value of pre-mature mRNA species (mature mRNA is 

less likely to reach steady state values as it has much slower degradation rate) in the steady 

states after and before the ligand addition. f is experimentally determined from the ratio of the 

average of 2-3 replicates of 5 late time points (t = 240, 255, 270, 285 and 300 min) and the 

average of all the data points at t = 0 (Table S3). For pre-mRNA the average at t ≥ 4 h is 

found to be 2.88 copies per cell, resulting in f of 2.69. 

Model n = 0 

The simplest model (see Fig. S4A) is given by the following equations: 
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                    ( )    (3a) 
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          ( )           ( )    (3b) 

For the ligand activation experiment the input variable uini = 1, for the degradation 

experiment, where initiation was stopped abruptly by addition of an inhibitor of initiation, 

uini= 0. 

Solutions 

For this simple system a closed solution still gives insight, the pre-mature mRNA is a simple 

exponential function and the mature mRNA a combination of two exponentials. 
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Initial conditions 

In the ligand activation experiment the system is assumed to be initially in steady state, but it 

is the steady-state condition without ligand addition. Since we assume ligand addition to 

influence only kini the steady state before ligand addition should correspond to the solution of 



(1a) with kini replaced by kini/f. For the degradation experiment the initial states are unknown 

and have to be fitted to the data. So the initial conditions are given by the following 

equations: 
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Where x0
pro

 is an unknown parameter and f is an experimentally determined value of the RNA 

fold induction (f = 2.69). 

Model n=2 

The model that includes two step promoter activation (see Fig. S4B) is described by the 

following ODE system: 
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Solutions 

For the n=2 simple system a closed solution exists but it does not provide useful insights. 

Initial conditions 

In the ligand activation experiment the initial state of the system is the steady state before 

ligand addition. The addition of the ligand is assumed to only have an effect TF binding step. 

The basal level of the activating transcription factor is lower before ligand addition (hence   

ktf 
0
 < ktf). To reach an f-times higher mRNA ‘production’ rate after ligand addition given two 

step initiation model, the following relationship between promoter constants should be 

satisfied: 

(
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)    (7) 

 



As f is an experientially determined factor (f = 2.69), this allows us to find the value of the 

ktf
0
: 

     
              

 (                           ) (                 )
   (8) 

The initial conditions for system (6) are then given by the steady-state values of system (6) 

with the promoter equations (9a-c) replaced by: 
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  ( )   (9a) 

   ( )      ( )       ( )       (9b) 
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   ( )           ( )  (9c) 

 

so that the initial conditions represent system before ligand addition. One of the promoter 

differential equations (6b) is replaced by mass conservation relation otherwise the system is 

singular. 

We have used the following initial conditions for system (6): 
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where uini is defined as above, and the value   
   

 is an unknown parameter to be fitted to the 

data. 

Multi-step models n = 1, 3, 5, 10, 20 

The multi-step model (see Fig. S4C) differentiates in the promoter cycle processes between 

activation, deactivation and reversion, and in the maturation between initiation/elongation, 

splicing, and maturation. It is given by the following equations: 
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elongation  
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Solution 

Also this system of equations has a closed solution. Because we do not find it insightful, we 

omit this and use numerical solutions only. 

Initial conditions 

In the ligand activation experiment the initial state of the system is the steady state before 

ligand addition. The addition of the ligand is assumed to only have an effect on the first n1
0
 

steps of the activation process (see Fig. 1). The basal level of the activating transcription 

factor is lower in these first steps (hence kact
0 < kact); if the ligand is added it reaches 

approximately the same level as the transcription factor for the second part of the activation. 

To reach an f-times higher ‘production’ from the promoter cycle, the cycle time should be f 

times as fast, giving the following relationship between the activation rate constants before 

(kact
0
 ) and after (kact) the ligand addition. 
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The initial conditions for system (11) are then given by the steady-state values of system (11) 

with the activation equations (11a-b) replaced by 
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Note that, if n1 = n1
0
, all corresponding kact in (11b) should also be replaced by kact

0
. 

The system is singular because of the promoter cycle. Therefore one of the ‘internal’ 

equations, e.g. the first one above, is replaced by the mass conservation relation 

∑   
       

   ∑   
       

   ∑   
       

       (14) 

Let us denote these steady-state values by     
 . Note that system (11) with its equation for 

activation replaced by (14) has to be solved for each new parameter vector in the search 

procedure. 

We have used the following initial conditions for system (11): 
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With uini defined as above, and the value   
   

 is an unknown parameter to be fitted to the 

data. 

 The variety of multi-step models examined 

In this paper we consider the following multi-step models 

n = 1: n1 = n2 = n3 = n4 = n5 = n6 = n7 = 1, n1
0 

= 1 

n = 3: n1 = 3, n2 = n3 = 1, n4 = n5 = n6 = n7 = 5, n1
0 
= 1 

n = 5: n1 = n2 = n3 = n4 = n5 = n6 = n7 = 5, n1
0 

= 2 

n = 10: n1 = n2 = n3 = n4 = n5 = n6 = n7 = 10, n1
0 

= 4 

n = 20: n1 = n2 = n3 = n4 = n5 = n6 = n7 = 20, n1
0 

= 8 



Fit procedure 

We used the two time courses for the ligand activation and the time course for the pre-mature 

mRNA degradation to obtain the unknown parameters in our models. The mature mRNA 

degradation data (Fig. 2D) were employed for validation. 

Model parameters 

The parameter vector p to be fitted with the three time courses (pre-mature and mature mRNA 

from the ligand activation and pre-mature mRNA from the degradation experiment) is for the 

simple model (n = 0) given by 

ps = (kini ,kmat ,kdeg , x0
pro )      (16) 

for the two-step promoter activation model n=2 by 

pt = (ktf, kpol, kini ,kmat ,kdeg , x0
pro )    (17) 

and for the multi-step models (n = 1, 3, 5, 10, 20) 

ps = (kact, kdea, krev, kini , kelo, kspl, kmat, kdeg, x0
spl 

)  (18) 

The initial guesses for the parameter search are based on the rough manual fit of the 

experimental data. They are given by 

ps = (
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The initial guesses are then used to define the boundaries of the search domain used in the 

fitting procedure, which uses multiple initial parameter vectors. These search boundaries are 

[
 

 
    ] for any kinetic constant k, and [

   

 
 
   

 
] for any initial concentrations x0. 

Model observables 

We denote the observables by (opR (t, p, uini), omR (t, p, uini)) for the pre-mature mRNA and 

the mature mRNA respectively. For the simpler models (n = 0 and n = 2) the model 

observables are 

   (        )      (           )    (22a) 
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and for the multi-step models (11a-g) 
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Object function 

The distance measures per data set are 
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where N denotes the number of time-points, n the number of data-points per time point, and 

ed the experimental data; the upper-indices stand for l-ligand addition experiment, d-

degradation experiment, pR-pre-mature mRNA, mR-mature mRNA. The object function we 

use for the fit procedure is 

 ( )       ( )       ( )       ( )     (25) 

The first part (24a) compares the model with the pre-mature mRNA data of the ligand 

activation experiment, the second part (24b) with the mature mRNA data of the ligand 

activation experiment, the third part (24c) with the pre-mature mRNA of the degradation 

experiment, while (24d) is be used to evaluate the quality of the validation with mature 

mRNA decay time course and is not involved in the objective for the fitting therefore. We 

have scaled the two ‘mature’ terms with 10 to take the difference of the concentration values 

into account. Please note that the parameter vector p, for which this object function V is 

minimal, is a Weighted Least Squares Estimate. For it to be a MLE (1) the assumption is 

needed that the data-errors for all time points are independent and normally distributed with 

(scaled) variance 1. 

 

Search 

We employed a standard global search algorithm, called Controlled Random Search (CRS) 

(2). The main idea behind this algorithm is that, starting with an initial collection of 

parameter vectors, CRS repeatedly draws a new parameter vector that replaces a vector in the 

collection if its data fit is better. The CRS method starts with taking a random set of 

parameter vectors inside a search domain by drawing random values from the uniform 

distribution (confined by D) for each parameter value for each vector. Then the 

corresponding values of the object function are computed for each vector in the set. The 

bounds of represent the a priori limits for the parameters.  

From this list of nQ vectors, a new vector is created using the rule  

       ̅              
 (26) 



where is a random vector from the domain, and is the average of a random subset of vectors 

in the domain. To ensure that the new vectors are selected with equal preference over the 

logarithmic space, equation (26) is modified element wise to  

           (  ̅    )      

    (27)
 

If , and , the parameter vector with the highest object function 

is replaced by  

 ̅|  ( ̅)     ( ( ))          
(27) 

By repeating this, the worst fitting parameter vectors are removed continuously and replaced 

by ones with a better fit. Eventually, the points will form a cloud that gets denser and denser. 

The algorithm stops when    ( ( ))         ( ( )) with sc the stop criterion. So the worst 

fit in the remaining collection has an at most % larger V value than that of the best fit. We 

used the following values: sc = 1.01, nQ = 300. The frequence with which a parameter value 

was found in new parameter vectors during the fitting is shown in Fig. S7. 

The resulting optimal parameters are shown in Table S6. 

 

Statistical and sensitivity analysis 

Residual analysis 

The first step in our a posteriori analysis is based on the residual values only. With this we 

can test whether we should reject the hypothesis that our mathematical model with the 

obtained parameter vector  ̂ is an acceptable description of the data. 

There are two types of residual test: 

Size-based. Here we test the probability that the obtained V( ̂) lies in the χ2 distribution 

corresponding to our number of data-points and number of unknown parameters: χ2 -test Tχ2 

= V( ̂)∈χ2(df). If the test value T > δ(α), the hypothesis is rejected. The δ is the value such 

that cumulative distribution function CDF (χ2(df)) = 1−α, with α the confidence level and df 

the degrees of freedom. The df is defined as df = N-m, where N is the number of data points 

fitted and m the number of parameters under assumption that the parameters are independent. 

Correlation-based. Here the probability is tested that the residuals are uncorrelated: runs-

test      
      

√   
∈  (   ), where Ru is a function of sign changes in e( ̂), which is the 

vector of differences per timepoint between the model results and the average of the data 

points. Again if the test value T > δ(α), the hypothesis is rejected. 

For all models 95% χ2 -tests are passed, all pass the 95% runs-test with exception of n=0 

model (both described above; the interval for 5% confidence interval is (-1.96,1.96)).  

))((max<)( pVpV new Dpnew 



Model discrimination 

Because models n = 0 and n = 2 have different number of parameters compared to multistep 

models with n = 1,3,5,10 and 20 we calculated Akaike Information Criterion (AIC) in order 

to objectively access which models describe the data better. The AIC is defined as: 

    
 ( ̂)

 
 

     

 
      (28) 

where     is the model complexity, defined as the number of independent parameters. For 

the n = 0 model      , while for the n = 2 model       and for multi-step models 

      (rate constants describing mRNA production rate are co-dependent for all n>0 

models, so the number of independent parameters is the total number of parameters minus 1). 

According to the AIC criterion all the multi-step models are statistically more likely than the 

simpler n = 0 and n = 2 models (Table S7). 

Since all multistep models have similar properties according to the statistical tests we can try 

to further discriminate according to the value of the object function – smaller value means 

better overall fit. Additionally, smaller run-test values are also preferable. Keeping this in 

mind the better models seem to be n = 1, n = 3 and n = 5, although the differences between all 

multi-step models are not dramatic. 

Sensitivity analysis (n = 5 model) 

For local analysis the pairwise covariance coefficient of the parameters (Table S8) was 

calculated. First the sensitivity matrix J was determined by perturbing each parameter by 

0.01% in both directions and calculating the corresponding sensitivity coefficient of  ( ̂)at 

each data point, resulting in a 396 x 8 matrix. The covariance matrix is computed as     

(   )  and the correlation coefficient between i-th and j-th parameter as       
     

√           
. 

Further, parameter dependent and independent 95% confidence intervals were calculated 

(Table 2). For global independent parameter sensitivity analysis, parameters were sampled 

one parameter at a time from a uniform distribution with limits four times lower and higher 

than the best-fit value. This resulted in N = 3,000 new parameter vectors with a single 

parameter perturbed. Then for each new parameter vector fold change of the object function 

compared the best fit was calculated. The results are plotted in Fig. S9.  

Additionally, the co-dependent parameter analysis was done by sampling the three out of four 

co-dependent promoter activity rate constants (kact, kini and krev) from respective uniform 

distributions. The ranges were as follows: 0.033
-6 

min
-1

 for kini, 0.025
-5 

min
-1

 for kact and krev. 

The fourth constant (kdea) was adjusted to keep the mRNA production rate at a fixed value 

determined by the following relationship: 

               

                                
                 (29) 



The rate of mRNA production found in the fitted model was 0.238. With exception of cases 

when kact deviates from the found by fitting by high percentage values the resulting fits were 

very close to the original fit (90% of fits have deviation less than 10% of the original). 

Validation of the n = 5 model 

To validate the n = 5 model the model output was compared to the mature mRNA decay data 

(Table S5). Since the mRNA decay was measured after 180 min of ligand treatment and 

addition of the inhibitor results in inhibition of initiation at the TSS the following initial 

conditions were used: 

  
   ( )     i=1…n1      (30a) 

  
   ( )     i=1…n2      (30b) 

  
   ( )     i=1…n3      (30c) 

  
   ( )     

   (   ) i=1…n 4     (30d) 

  
   ( )     

   (   )  i=1…n5     (30e) 

  
   ( )     

   (   ) i=1…n6      (30f) 

  
   ( )     

   (   ) i=1…n7      (30g) 

where the   
 (   ) is the value of the   

  after 180 min of ligand addition. The promoter 

variables are set to zero as initiation has been inhibited. Since the inhibitor used does not 

inhibit the polymerases that have escaped the promoter all the mRNA species are still present 

after the addition of the inhibitor. The value of the resulting objective function      ( ̂) 

      was 0.48 which is comparable to that of the model fit in the ligand activation 

experiment.  

Global analysis of the independent parameter sensitivity of the validation fit was carried out 

in the same manner as the model fit. The results indicate that the validation has the same 

sensitivity as the model fit with the exception of being insensitive to kspl value (Fig. S10). 

 

Refitting the ligand induction time-course after splicing inhibition 

The additional data after splicing inhibition was treated in the same way as the other datasets 

(Table S9). 

For re-fitting the model the induction factor f was adjusted to the experimentally observed 

1.42 value calculated as the mean of the last five pre-mRNA data points (150-180 min; the 

mature mRNA does not reach a steady state level in the duration of the experiment). The 

same observables were used as in the original fitting procedure. The distance measures per 

dataset were:  

     ( )  ∑ ∑ (     
    

   
  

   (  
     )        (  

   ))    (31a) 



     ( )  ∑ ∑ (
   (  

     )       (  
   )

 

  
    

   
  

   )     (31b) 

 

The object function was defined as sum of the distance measures: 

  ( )       ( )       ( )     (32) 

Each single parameter was allowed to change within 4-fold of its original value and the 

model was fitted anew to the perturbed dataset (Table S9).  

In the second round (run 2) in Table S19 the changed kspl (which produced the best fit in 

run1) was inserted into the model and the model was fitted varying each of the remaining rate 

constants by 4-fold. The list of the factors by which constants were adjusted and of the 

residuals is presented in Table S10. 

The sensitivity of the refit to the individual constants perturbations performed in the same 

way as in the a posteriori analysis of the original model is presented in Fig. S14. 

Finally, the dependence of the prediction quality on the specific parameter values was tested. 

All but the adjusted parameters were sampled independently according to the same procedure 

as for the parameter sensitivity analysis of the original fit. Then for each new parameter 

vector the fold changes of the object function compared to the optimal parameter vector were 

calculated for both (the original and perturbed) models. The relationship between fold change 

in the object function of the original model and the perturbed is plotted Fig. S13 (blue). Same 

type of sensitivity analysis was done by sampling co-dependent promoter activity rate 

parameters (kact, kdea, kini and krev) according to same procedure as for the original fit (Fig. 

S13, violet). 

  



Figures 

 

 

Fig. S1: Invariance of Ct values. The values of Ct (CtADRP-CtRPLP0) for DMSO-treated 

samples pre-mRNA (A) and mature RNA (B) are displayed over time. Data points represent 

averages from three experiments. Bars represent standard deviation. 

 

 

 

Fig. S2: Standard curves for the absolute mRNA quantification. qPCR was performed on 

known amounts of cDNA. The resulting Ct values were plotted against absolute copy number 

calculated from the measured DNA concentration and individual molecular weights of the 

A B 



standard fragments. For the ADRP gene two independent experiments were performed and 

fitted separately resulting in the maximal (blue) and minimal (red) fits used to estimate the 

method error. The fit to all data points (not shown) was used to calculate the average copy 

number. The standard curves were obtained for intron 1-exon1 (A), exon1-exon3 (B), exon5-

exon6 (C) and the Barnase control gene (D) fragments. Log refers to the 10-based logarithm 

where Ct is, as usual 2-log based. The theoretical value of the direction coefficient is thereby 

-
2
log10 = -3.32. 

 

  



 

 

Fig. S3: Up-regulation of the ADRP gene upon PPARδ ligand treatment. (A) Location of 

the used qPCR primers in relation to the introns (lines) and exons (boxes) of the human 

ADRP gene. The PCR primer pair marked in blue monitors the presence of the first intron, as 

the right primer lies on the exon-intron boundary. After the splicing step in which this intron 

is excised, this primer pair will no longer give a PCR product. Therefore this primer pair 

operationally defines the ‘pre-mRNA’ (B), corresponding to the sum of all states of mRNA 

that still have to be spliced on the first intron. The PCR primer pair indicated in red targets 

the border of exon 1 and 2 and therefore gives a product only when exon 1 has been excised 

by splicing. In combination with only measuring polyadenylated fraction of mRNA this 

primer pair operationally defines what we shall call ‘mature’ mRNA (C). HepG2 cells were 

treated for indicated times with 100 nM GW501516, the data was normalized to 

housekeeping gene expression and fold inductions were calculated in comparison to vehicle 

(DMSO) control. Data points indicate the means of at least three independent experiments 

corrected for outliers using the MAD method (3). Error bars represent the standard error of 

the mean. Two-tailed, paired Student's t-tests were performed to determine the significance of 

the ligand-dependent regulation of ADRP RNA in reference to vehicle (* p<0.05, ** p<0.01, 

*** p<0.001) 

  



 

Fig. S4: Alternative models of mRNA dynamics. (A) A highly simplified model of a 

constitutively active promoter and first-order mRNA elongation and degradation process is 

shown. (B) A more sophisticated model that includes two step promoter activation (C) A 

realistic model that takes into account the mRNA dynamics cycle, as well as the multi-step 

nature of mRNA maturation (including elongation and splicing) and degradation. The 

transcriptional dynamics cycle, maturation and degradation were each taken to have an 

arbitrary number of 15 irreversible reactions with equal rates. The plots below show mature 

mRNA (D-F) and pre-mRNA (G-I) induction time courses for the two different models (solid 

line; refined model C, dotted line: simplified model A) under various parameter regimes: (D, 

G) when promoter cycling time (Tcyc) exceeds the degradation time (Tdeg) and maturation 

time (Tmat), (E, H) when Tcyc < Tdeg and Tcyc > Tmat, and (F, I) when Tcyc < Tdeg and Tcyc < Tmat. 

All models start with initial conditions corresponding to zero transcription activity (gene 

regulatory region in inactive state) and same steady state for mature mRNA. 



 

Fig. S5: Copy numbers of different mRNA species. Copy numbers of pre-mRNA (blue) 

and mature mRNA (red and orange) were calculated based on qPCR data (Figs. S3B and C). 

Averages are shown as horizontal lines (based on the average data fit of all the points in Fig. 

S2) and the maximum-minimum estimation range (based on the blue and red data fits in Fig. 

S2, respectively) is indicated by the bars. 

 

 

Fig. S6: GAPDH degradation rates. HepG2 cells were treated with 100 nM GW501516 for 

3 h and then new mRNA synthesis was blocked by the application of 50 µM DRB. The 

relative levels of mature RNA of the very stable gene GAPDH were measured in relation to 

the housekeeping gene RPLP0 by qPCR. Data points indicate the means of at least three 

independent experiments; error bars represent the standard error of the mean. 

  



 

 

Fig. S7: The parameter values explored in the fitting procedure of the n = 5 model. 

During the fitting procedure new parameter vectors are created according to the following 

rule where  ̅     is the average of all initial vectors created by 

drawing from uniform random distributions. The parameter values are described by 

distributions plotted for all rate constants (A-H) and for pre-mRNA decay initial conditions 

(J). The green star indicates the optimal value of the parameter.  
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Fig. S8: The fitted mRNA induction time course data for four different models: n = 0 

(A, B), n = 1 (C, D), n = 3 (E, F), n = 10 (G, H) and n = 20 (I, J). The time course for pre-

mRNA is shown on the left and for the mature mRNA on the right. The fit for the n = 5 

model is shown in Fig. 2. Small filled circles present all data points used for fitting, empty 

circles represent the calculated mean. 



 

Fig. S9: A posteriori analysis of the model n = 5 fit sensitivity to the independent 

parameter perturbation. The fold deviation of the object function from the best fit  ( ̂ ) 

 ( ̂ 
  ) (where  ̂  is the perturbed parameter) is plotted against the fold deviation of the 

parameter perturbation 
 ̂ 

 ̂
 
    



 

Fig. S10: Analysis of the model refit (after splicing inhibition) sensitivity to the 

independent parameter perturbation The fold deviation of the object function from the 

best fit  ( ̂ )  ( ̂ 
  ) (where  ̂  is the perturbed parameter) is plotted against the fold 

deviation of the parameter perturbation 
 ̂ 

 ̂
 
  . 



 

Fig. S11: Estimation of a degradation mechanism and primer set validation. Human 

HepG2 cells were stimulated with 100 nM GW501516, total RNA was collected and qPCR 

was performed using the polyadenylated RNA fraction as template. (A) Primer localization 

relative to the introns (lines) and exons (boxes) of the human ADRP gene. (B) In order to 

determine 5' degradation, primers located in exons 1,3 (red) were used for qPCR. The results 

were compared with that obtained by qPCR with primers located in exons 5,6 (black). (C) 

Control experiment with both primer sets in exons 5 and 6. Data are presented as fold 

induction of ligand over vehicle (DMSO) treatment. Each data point represent the mean of at 

least three biological replicate samples corrected for the outliers with MAD method, error 

bars represent the standard error of the mean. Two-tailed, paired Student's t-tests were 

performed to determine the significance of the ligand-dependent regulation of ADRP RNA in 

reference to vehicle (* p<0.05, ** p<0.01, *** p<0.001). 

  



 

Fig. S12: Splicing inhibition. HepG2 cells were incubated simultaneously with 100 µM 

isoginkgetin and 100 nM GW501516 (A,B) or pre-treated for 3 h with 100 µM isoginkgetin 

before adding GW501516 for the indicated time (C,D). The control was mock treatment with 

vehicle (DMSO) instead of inhibitor/ligand. The levels of pre-mRNA (A,C) and mature 

mRNA (B,D) were measured by qPCR and the copy numbers were calculated. The data 

points represent the mean of two biological repeats. 

  



 

Fig. S13: The effects of parameter perturbation on the splicing inhibition data fitting. 

Independent parameter changes were sampled for all parameters (except kspl and kdeg) at 

random using the same procedure as for the parameter sensitivity analysis described above. 

Co-dependent changes in the promoter parameters (kact, kini, kdea and krev) were sampled as 

well according to the described procedure. The respective fold deviation from the best fits of 

the original and perturbed models were calculated and plotted against each other. The results 

obtained with independent parameter sampling are shown in blue; the ones obtained with 

dependent parameter sampling are in purple. 

  



 

Fig. S14: Analysis of the model validation fit sensitivity to the independent parameter 

perturbation. The fold deviation of the object function from the best fit  ( ̂ )  ( ̂ 
  ) 

(where  ̂  is the perturbed parameter) is plotted against the fold deviation of the parameter 

perturbation 
 ̂ 

 ̂
 
    

 



Tables 

 

Gene fragment Sequence 

mature RNA 5’ F GCA-GTC-CGT-CGA-TTT-CTT-TC 

mature RNA 5’ R ACC-GTT-CTC-TGC-CAT-CTC-AC 

mature RNA 3’ F GTA-GAA-CAG-TAC-CTC-CCT-CTC 

mature RNA 3’ R CGT-GAC-TCA-ATG-TGC-TCA-G 

mature RNA 3’ctrl F CAG-TGA-CTG-GCA-GTG-TGG-AG 

mature RNA 3’ctrl R ACG-GGA-GTG-AAG-CTT-GGT-AG 

pre-mRNA F TGG-AGA-GCT-GGA-GAG-AGG-AA 

pre-mRNA R GTT-GTG-GAT-CAA-CTG-CAA-CG 

RPLP0 F AGA-TGC-AGC-AGA-TCC-GCA-T 

RPLP0 R GTG-GTG-ATA-CCT-AAA-GCC-TG 

GAPDH F CAT-GAG-AAG-TAT-GAC-AAC-AGC-CT 

GAPDH R AGT-CCT-TCC-ACG-ATA-CCA-AAG-T 

Barnase F AGC-CAA-CCA-CTG-AGG-ATC-TG 

Barnase R GTC-TGC-AAG-GTT-CCC-TTT-TG 

 

Table S1: PCR primer pairs for qPCR of the human ADRP gene and house-keeping 

genes RPLP0 and GAPDH. The annealing temperature was in all cases 60
 
C. The primers 

for ADRP mature RNA 5’, mature RNA 3’, mature RNA 3’ctrl and pre-mRNA are color-

coded in Figs. S6 and 11 red, black, green and blue, respectively. 
  



  Model kact kdea kini kmat kdeg 

 Tcyc>Tmat 

 Tcyc>Tdeg 

a* 0.167 0.500 4.000 1.000 0.500 

b* - - 0.583 0.067 0.033 

 Tcyc > Tmat 

 Tcyc <Tdeg 

a 0.167 0.500 1.000 1.000 0.125 

b - - 0.146 0.013 0.008 

 Tcyc < Tmat 

 Tcyc <Tdeg 

a 0.167 0.500 1.000 0.200 0.125 

b - - 0.146 0.013 0.008 

 

Table S2: Parameter values used for alternative mRNA metabolism models simulation. 

These values were used for calculating the graphs presented in Fig. S4. a: simplified single 

step model, b: multi-step model for promoter cycle, maturation and degradation.  

  



 

t pre-mRNA  n 

0 1.03 1.07 1.19 1.57 0.71 0.63 0.93 0.8 1.32 0.79 0.89 39 

  0.84 1.03 1.2 1.52 0.46 1.55 0.92 0.94 1.11 1.19 1.07   

  0.91 1.02 0.89 1.21 0.63 0.72 0.59 0.95 1.59 1.02 1.17   

  1.21 1.29 1.3 1.23 1.37 1.35 

     

  

5 1.73 1.73 1.53 0.53 0.99 1.64 

     

6 

15 1.64 2.45 0.65 1.1 0.53 0.65 0.99 

    

7 

30 0.99 2.54 1.42 0.99 2.35 1.53 2.15 2.15 2.25 

  

9 

45 2.35 2.74 1.95 2.85 2.54 2.15 1.84 1.64 

   

8 

60 2.45 2.25 1.1 0.76 3.33 1.73 1.84 0.41 2.64 2.74 1.84 12 

  1.53 

          

  

75 2.05 2.25 1.1 1.53 1.95 1.73 2.25 

    

7 

90 2.15 2.54 1.64 2.25 2.35 

      

5 

105 2.05 1.73 2.05 2.25 2.45 

      

5 

120 3.43 2.64 1.73 1.84 1.95 1.84 2.85 3.14 3.43 5.11 2.05 11 

135 2.25 2.54 2.45 2.85 2.54 

      

5 

150 2.05 2.35 2.25 1.32 1.95 3.05 

     

6 

165 1.64 2.45 2.15 3.52 2.85 1.42 2.54 4.19 

   

8 

180 1.95 3.22 3.22 2.05 3.52 2.05 2.64 3.33 2.45 2.35 

 

10 

195 2.45 2.35 2.45 2.54 

       

4 

210 3.72 2.74 1.95 2.25 3.81 3.63 3.05 

    

7 

225 2.85 2.54 2.35 2.45 2.94 

      

5 

N=17                       154 

 

Table S3: pre-mRNA species copy numbers of the PPAR ligand induction experiments. 

Calculated copy numbers of the experiments reported in Fig. 2A (pre-mRNA, observable 1). 

Time t is in minutes, n refers to the number of replica data points at the same time point and 

N is the number of time points examined.  

  



t         mature mRNA         n 

0 15.35 13.55 17.18 12.24 15.13 17.68 15.84 16.48 21.5 13.75 15.29 48 

  16.48 13.55 14.36 19.22 12.01 14.13 17 15.74 15.42 18.55 12.92   

  14.42 18.9 30.37 12.52 15.77 20.08 31.6 13.52 17.07 18.98 27.95   

  12.86 18.32 32.46 12.21 12.16 12.21 16.04 17.39 23.18 30.95 24.67   

  23.86 24.11 25.13 33.14 

       

  

5 16.76 16.76 18.4 

        

3 

15 15.07 20.09 16.76 13.39 16.76 15.07 20.09 18.4 16.76 16.76 16.76 12 

  18.4 

          

  

30 18.4 16.76 16.76 11.6 13.39 13.39 23.33 20.09 18.4 16.76 

 

10 

45 16.76 20.09 18.4 20.09 16.76 16.76 18.4 

    

7 

60 23.33 26.43 24.99 18.4 16.76 13.39 16.76 26.43 13.39 21.65 20.09 13 

  21.65 20.09 

         

  

75 20.09 26.43 23.33 16.76 20.09 16.76 20.09 

    

7 

90 26.43 21.65 26.43 21.65 20.09 18.4 24.99 

    

7 

105 28.13 21.65 31.28 21.65 21.65 23.33 26.43 

    

7 

120 20.09 28.13 26.43 20.09 23.33 16.76 32.88 32.88 32.88 26.43 29.76 11 

135 40.4 37.49 53.83 26.43 16.76 26.43 24.99 

    

7 

150 34.35 35.88 43.54 35.88 16.76 21.65 24.99 

    

7 

165 34.35 37.49 20.09 31.28 24.99 34.35 38.92 

    

7 

180 35.88 38.92 32.88 32.88 28.13 29.76 35.88 35.88 41.94 31.28 

 

10 

195 41.94 41.94 44.92 29.76 28.13 34.35 38.92 

    

7 

210 40.4 46.64 58.38 29.76 41.94 37.49 29.76 

    

7 

225 41.94 49.33 69.96 41.94 29.76 32.88 

     

6 

N=17                       177 

 

Table S4: Mature RNA species copy numbers of the PPAR ligand induction 

experiments. Calculated copy numbers of the experiments reported in Fig. 2B (mature 

mRNA, observable 2) are shown. Time t is in minutes, n refers to the number of replica data 

points at the same time point and N is the number of time points examined. 

  



t       pre-mRNA       n 

0 4.61 3.44 3.5 6.66 10.1 11.34 7.22 7 

1 8.89 6.41 3.98 
    

3 

2 7.02 9.86 3.93 
    

3 

3 5.55 7.45 9.22 
    

3 

4 3.93 4.17 10.57 
    

3 

5 1.82 0.91 1.82 4.03 5.75 4.14 
 

6 

6 3.87 7.17 3.39 
    

3 

7 1.7 0.98 2.05 3.11 3.71 3.39 
 

6 

8 2.39 5.19 6.61 1.34 1.58 0.85 
 

6 

9 5.8 4.61 5.08 1.64 1.88 1.7 
 

6 

10 0.66 1.16 2.62 1.04 2.73 1.28 
 

6 

15 0.52 0.98 0.66 0.52 
   

4 

N=12               56 

  mature mRNA   

0 38.8 30.87 51.24 36.38 35.77 28.39 46.54 7 

10 29.01 41.79 25.25 
    

3 

20 33.94 32.1 29.01 
    

3 

30 35.16 35.16 47.72 
    

3 

45 31.49 48.31 
     

2 

50 30.25 44.18 
     

2 

60 29.63 22.07 36.98 27.77 36.38 
  

5 

90 28.39 18.19 33.94 
    

3 

120 30.87 15.54 29.01 
    

3 

150 29.01 12.85 30.87 
    

3 

180 18.84 12.17 22.71 
    

3 

N=11               37 

 

Table S5: RNA species copy numbers in the RNA decay experiments. Calculated copy 

numbers of the experiments reported in Fig. 2C (pre-RNA, observable 1) and Fig. 2D (mature 

mRNA, observable 2) are shown. Time t is in minutes, n refers to the number of replica data 

points at the same time point and N is the number of time points examined. 

  



Model  kact/ktf kdea/kpol krev kini kelo kspl kmat kdeg x0
spl/pro

 

n=0 - - - 0.1887 - - 0.0797 0.0038 2.5959 

n=2 0.5008 0.7248  1.0097   0.0984 0.005 2.7671 

n=1 0.0087 0.0251 0.1220 1.7523 0.3906 0.1699 0.0221 0.0087 2.7640 

n=3 0.0382 0.0260 0.2153 0.8114 2.8624 0.5034 0.4122 0.0260 2.7585 

n=5 0.1061 1.3034 1.1455 3.4361 2.2717 0.5116 0.1607 0.0247 2.6614 

n=10 0.6509 2.0463 2.5940 1.1386 3.2848 0.9878 0.2382 0.0473 2.4357 

n=20 1.2009 6.9756 5.0111 1.7545 7.7699 1.8565 0.5549 0.0875 2.5040 

 

Table S6: Best fitting parameters. These parameters are used for the models n = 0, n=2, n = 

1, n = 3, n = 5, n = 10, n = 20; ktf  and kpol are indicated for model n = 2. 

 

 model  ( ̂)          ( ̂)             ( ̂)             ( ̂)       
 run 

test 
AIC 

n=0 0.49 0.42 0.45 0.78 2.09 0.51 

n=2 0.48 0.43 0.45 0.74 1.67 0.51 

n=1 0.42 0.36 0.39 0.7 0.83 0.47 

n=3 0.43 0.4 0.38 0.7 0.63 0.48 

n=5 0.44 0.41 0.38 0.7 1.04 0.48 

n=10 0.44 0.42 0.38 0.73 1.04 0.49 

n=20 0.44 0.42 0.38 0.72 1.46 0.49 

Table S7: Results of the residual analysis for models n = 0-20.  

 

 

kact kdea krev kini kelo kspl kmat kdeg 

kact 1.000 -0.925 0.817 -0.942 0.087 -0.106 0.167 0.004 

kdea -0.925 1.000 -0.736 0.998 -0.089 0.078 -0.166 -0.005 

krev 0.817 -0.736 1.000 -0.771 0.076 -0.063 0.236 0.071 

kini -0.942 0.998 -0.771 1.000 -0.112 0.108 -0.193 0.018 

kelo 0.087 -0.089 0.076 -0.112 1.000 -0.789 0.548 -0.724 

kspl -0.106 0.078 -0.063 0.108 -0.789 1.000 -0.695 0.918 

kmat 0.167 -0.166 0.236 -0.193 0.548 -0.695 1.000 -0.459 

kdeg 0.004 -0.005 0.071 0.018 -0.724 0.918 -0.459 1.000 

 

Table S8: Pairwise covariance coefficients of the parameters in the n = 5 model. 

  



t pre-mRNA  n 

0 3.05 4.01 2.74 3.81 4 

15 2.94 3.43 2.15 5.57 4 

30 4.65 3.22 3.33 

 

3 

45 3.33 4.57 3.81 

 

3 

60 4.08 4.65 3.43 4.74 4 

75 4.29 5.4 2.85 6.55 4 

90 4.19 5.3 2.94 7.02 4 

105 4.29 4.37 2.54 5.01 4 

120 3.91 3.22 4.74 

 

3 

135 5.21 2.64 5.3 

 

3 

150 4.74 6.39 3.33 5.21 4 

165 4.29 6.39 3.22 4.65 4 

180 3.72 5.3 3.43 5.93 4 

195 5.3 2.94 4.29 7.11 4 

210 4.46 5.75 5.57 7.28 4 

N=16         56 

  mature mRNA    

0 13.39 11.6 16.76 21.65 4 

15 8.08 8.08 16.76 15.07 4 

30 16.76 16.76 15.07 8.08 4 

45 13.39 9.86 16.76 15.07 4 

60 18.4 15.07 15.07 9.86 4 

75 15.07 13.39 16.76 9.86 4 

90 20.09 21.65 23.33 

 

3 

105 11.6 18.4 21.65 

 

3 

120 11.6 23.33 16.76 

 

3 

135 18.4 15.07 18.4 

 

3 

150 23.33 29.76 18.4 

 

3 

165 15.07 6.21 16.76 38.92 4 

180 13.39 15.07 15.07 24.99 4 

195 13.39 18.4 35.88 31.28 4 

210 11.6 23.33 21.65 18.4 4 

N=16         55 

 

Table S9: RNA abundance data after splicing inhibition. Copy numbers are indicated. 

  



  kact  kdea  krev  kini  kelo kspl  kmat  kdeg  

   ( ̂)    run 1  6.64 6.64 6.71 6.64 6.74 1.47 6.71 6.61 

a run 1  1.1288 0.8965 4.0000 1.1119 4.0000 0.2650 0.3526 1.1650 

  ( ̂)    run 2  1.44 1.44 1.43 1.44 1.47 

 

1.46 1.39 

a run 2  0.9546 1.0467 0.3545 0.9565 4.0000   0.5324 1.1257 

 

Table S10: Residuals and parameter adjustment factor for data re-fitting after splicing 

inhibition.   ( ̂)    is the object function divided by the number of data points, a is the 

ratio between the new parameter and the old one. 

 

References 

 

1. Draper, N.R., and Smith, H. (1988). John Wiley&Sons, Inc, New York. 

2. Price, W.L. (1983) Global optimization by controlled random search. Journal of Optimization 

Theory and Applications, 40, 333-348. 

3. Analytical_Methods_Committee. (2001), AMC technical brief. Royal Society of Chemistry, 

Vol. 6. 

 

 


