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1 Supplementary materials

1.1 Public CLIP-Seq data used

The full list of data used is given in Table S1.

RBP Technology Cell Citation
Ago HITS-CLIP HeLa [4]
Ago{1..4} PAR-CLIP HEK293 [9]
IGF2BP{1..3} PAR-CLIP HEK293 [9]
PUM2 PAR-CLIP HEK293 [9]
QKI PAR-CLIP HEK293 [9]
TNRC6{A..C} PAR-CLIP HEK293 [9]
hnRNP H1 HITS-CLIP HEK293 [11]
hnRNP a2b1 HITS-CLIP HEK293 [10]
hnRNP {a1,F,M,U} HITS-CLIP HEK293 [10]
Lin28 HITS-CLIP HEK293, hESC [18]
MOV10 PAR-CLIP HEK293 [26]
Ago2, HuR HITS-CLIP, PAR-CLIP HEK293 [12]
hnRNP C iCLIP HeLa [13]
HuR PAR-CLIP HeLa [16]
HuR PAR-CLIP HEK293 [21]
HuR iCLIP HeLa [30]
TIA1, TIAL1 iCLIP HeLa [32]
PTB HITS-CLIP HeLa [33]
TDP43 iCLIP SH-SY5Y [28]
Ago2 HITS-CLIP HEK293 [29]
hTra2 RIP-Seq HeLa [29]
Ago2 HITS-CLIP mESC [17]
TDP43 HITS-CLIP Mouse brain [23]
Nova HITS-CLIP Mouse brain [35]
Nova iCLIP Mouse brain [27]
Mbnl1 HITS-CLIP Mouse brain, C2C12, heart, muscle [31]

Table S1: List of CLIP-Seq data sets used

1.2 Previously described RBP binding preferences

To evaluate the performance of Zagros on existing CLIP-Seq datasets we compared the motif recovered with a
consensus sequence built from previously described binding preferences of each RBP examined. These consensus
sequences and their origins are given in Table S2.

RBP Consensus
HuR UUUUU [24]
PTB CUCUCU [22]
QKI2 ACUAA [7]
Nova YCAY [2, 5]
TIA1 UUUUA [32, 6]
TIAL1 UUUUA [32]
PUM2 UGUAUAUA [8]
TDP43 UGUGU [14]
hnRNP C UUUUU [34]
hnRNP H GGGA [3]
IGF2BP1,2,3 CATH [9, 25]

Table S2: Previously described consensus sequences used in evaluating performance

2



2 Supplementary methods

Here we present the complete formalization of our method. The data available for the solution of the motif-finding
problem is the primary sequences, the secondary structure of those sequences, and the location of the cross-link
induced read artifacts, which we call diagnostic events. Given that the primary sequence will always be used,
the optional use of the other two pieces of information gives us four different ways our algorithm can be run.
The first of these uses only sequence information; the second uses sequence information and pre-computed base-
pair probabilities informing us about the structure of the sequences; the third uses sequence information and the
locations of the diagnostic events; and finally, the fourth way of running the algorithm uses all of sequence, structure
and diagnostic events information. Since we present results for each of these four approaches, we will fully describe
here both the model and how the algorithm works in each case. Throughout, we will assume the length of the
RBP binding motif is fixed at w nucleotides. Further, we assume that any given sequence may either contain an
occurrence of the motif, or it might not – this is the so-called zero-or-one-occurrence-per-sequence assumption, or
ZOOPS. Much literature exists on the problem of motif discovery, which we will attempt not to rehash here; for
further background and details please refer to [15, 19, 1].

2.1 Observed data

Let S = {S1, S2, . . . , Sn} be a set of unaligned RNA sequences over the alphabet Σ = {A,C,G,U}, obtained from
a CLIP-seq experiment. Without loss of generality, to make the notations simpler we assume a fixed length, m, for
all the sequences. Let T represent the secondary structure of the sequences in S, such that Tij = 1 if nucleotide j
in sequence i is paired, and Tij = 0 otherwise. The structure of an RNA molecule is completely determined by its
primary sequence; in describing our model and algorithms then, we will assume that T is known whenever S is also
known (in practice, we estimate T using McCaskill’s algorithm – see Section 2.6.3).

2.2 Latent data

Under the zero-or-one-occurrence-per-sequence (ZOOPS) model, each sequence contains either zero or one occur-
rences of the RBP binding motif; we treat the presence and location of the motif as latent data. Let Xij = 1 if the
motif occurrence for sequence i is at position j, and Xij = 0 otherwise. For notational convenience, we also define
Oi = 1 if there is a motif occurrence in sequence i and Oi = 0 otherwise. Notice that O is completely specified by
X , since Oi =

∑m−w+1
j=1 Xij .

2.3 General model description

In all cases, our model will contain a representation of the sequence of the RBP binding site. This will be augmented
by additional information about cross-linking and structure when such information is used. To avoid repetition, we
start by describing the sequence component of the model here, and defer description of the cross-link and structure
components until Sections 2.5 and 2.6 respectively. Further, the ZOOPS assumption requires augmenting the model
with an additional parameter, which we also describe here as it is common to all four variants of Zagros.

We model the sequence of motif occurrences using a position weight matrix (product multinomial distribu-
tion), M and background distribution f . More specifically, M = (Mk)

w
k=1, where for any b ∈ Σ, we have

Mk(b) = Pr
(
b appears at position k of the motif

)
, and f(b) = Pr

(
b appears in background

)
. To account for the

ZOOPS assumption, we introduce the model parameter γ, which is the probability that a sequence contains the mo-
tif. Throughout, we will refer to the model as Θ. Hence, our basic model, which we will extend later for structure
and diagnostic events, is Θ = {M,f, γ}.
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2.4 Sequence-only motif discovery

Considering only the sequence, the model parameter set is defined as Θ = {M,f, γ}. The complete-data likelihood
for this model is

Pr(S,X|Θ) =

n∏
i=1

Pr(Si, Xi|Θ)

=

n∏
i=1

Pr(Si, Xi|Θ, Oi) Pr(Oi|Θ)

= Pr(O|Θ)

n∏
i=1

Pr(Si, Xi|Oi,Θ)

= Pr(O|Θ)

n∏
i=1

Pr(Si|Oi, Xi,Θ) Pr(Xi|Oi,Θ),

= Pr(O|Θ) Pr(X|O,Θ)

n∏
i=1

Pr(Si|Oi = 0,Θ)(1−Oi)
m−w+1∏
j=1

Pr(Si|Xij = 1,Θ)Xij . (1)

Here, we have two priors, Pr(O|Θ) and Pr(X|O,Θ). The first is the prior probability of a motif occurrence, given
that the model is known, while the second is the prior probability of the occurrence indicators, given knowledge of
the model and which sequences contain the motif occurrences. In the context of the sequence-only model, these two
priors may be calculated as

Pr(O|Θ) = Pr(O|γ) = γq(1− γ)n−q,

where we define q to be the number of sequences which contain an occurrence of the motif, i.e. q =
∑n

i=1Oi, and

Pr(X|O,Θ) =
n∏
i=1

m−w+1∏
j=1

( 1

m− w + 1

)Xij .
The complete-data likelihood also contains expressions for the probability of observing a sequence, given the lo-
cation of the motif in the sequence and the model are known, i.e. Pr(Si|Xij = 1,Θ), as well as the special case
where no motif occurrence exists in the sequence, i.e. Pr(Si|Oi = 0,Θ). Again, in the context of the sequence-only
model, we may calculate these as

Pr(Si|Xij = 1,Θ) =

m∏
l=1

U∏
b=A

(Ψblj)
νbli ,

and

Pr(Si|Oi = 0,Θ) =

m∏
l=1

U∏
b=A

f(b)νbli .

Here we introduce the indicator variable ν, which is defined such that νbli = 1 if base b appears at position l of
sequence i and, νbli = 0 otherwise. Finally, we have Ψb,l,j , which is the foreground PWM (i.e. M ) when l falls
within the motif occurrence starting at position j, or the background model f if it does not. More formally,

Ψblj =

{
Ml−j+1(b) if j ≤ l ≤ j + w − 1,
f(b) otherwise.

We employ the expectation maximization (EM) algorithm to estimate parameters for our model, Θ. The al-
gorithm iterates between an expectation step, in which the expected value of the log-likelihood is calculated using
current estimates of the parameters and a maximization step, where the model parameters are optimized to find the
maximum of this function.
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2.4.1 Expectation-maximization – E-step

The log of the complete-data likelihood is easily derived from Equation 1 as

log `(Θ|S,X) =

n∑
i=1

m−w+1∑
j=1

Xij log

(
1

m− w + 1

)
+ q log γ(n− q) log(1− γ)

+
n∑
i=1

(1−
∑m−w+1

j=1 Xij)
m∑
l=1

U∑
b=A

νbli log f(b)

+

n∑
i=1

m−w+1∑
j=1

Xij

m∑
l=1

U∑
b=A

νbli log Ψbl′ . (2)

Let us define Q(Θ,Θ(t)) as the expected value of the log-likelihood function with respect to X , given our current
model estimate, which we will represent as Θ(t), and our observed data S. Hence,

Q(Θ,Θ(t)) = EX|Θ(t),S(log `(Θ|S,X))

=

n∑
i=1

m−w+1∑
j=1

EX|Θ(t),S(Xij) log

(
1

m− w + 1

)
+EX|Θ(t),S(q) log γ(n− EX|Θ(t),S(q)) log(1− γ)

+
n∑
i=1

(1−
∑m−w+1

j=1 EX|Θ(t),S(Xij))
m∑
l=1

U∑
b=A

νbli log f(b)

+

n∑
i=1

m−w+1∑
j=1

EX|Θ(t),S(Xij)

m∑
l=1

U∑
b=A

νbli log Ψbl′ . (3)

Note here that we can replace the expected value of q with the explicit summation, i.e.

EX|Θ(t),S(q) =

n∑
i=1

m−w+1∑
j=1

EX|Θ(t),S(Xij).

Notice also that, since Xij are Bernoulli random variables, EX|Θ(t),S(Xij) = Pr(Xij = 1|Si,Θ(t)), which we may
compute as

Pr(Xij = 1|Si,Θ(t)) =
Pr(Si|Xij = 1,Θ(t)) Pr(Xij = 1|Θ(t))

Pr(Si|Θ(t), Oi = 0) Pr(Oi = 0|Θ(t)) +
∑m−w+1

j′=1 Pr(Si|Xij′ = 1,Θ(t)) Pr(Xij′ = 1|Θ(t))
.

Here, the prior probability on occurrence at any given position can easily be calculated by noting that

Pr(Xij = 1|Θ(t)) = Pr(Xij = 1|Oi = 1,Θ(t)) Pr(Oi = 1|Θ(t)) =
γ(t)

m− w + 1
.

The prior on non-occurrence of the motif is also straight-forward: Pr(Oi = 0|Θ(t)) = 1− γ(t). The remaining two
probabilities on observing the sequence, given either where the motif occurs, or the special case of non-occurrence,
have the same form as in the complete-data likelihood, i.e.

Pr(Si|Xij = 1,Θ(t)) =
m∏
l=1

U∏
b=A

(Ψ
(t)
blj)

νbli ,
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and

Pr(Si|Oi = 0,Θ(t)) =

m∏
l=1

U∏
b=A

f (t)(b)νbli .

The same can be said for the definition of Ψ
(t)
blj , which is analogously defined as

Ψ
(t)
blj =

{
M

(t)
l−j+1(b) if j ≤ l ≤ j + w − 1,

f (t)(b) otherwise.

2.4.2 Expectation-maximization – M-step

Maximizing for Θ(t+1) with respect to Q(Θ,Θ(t)) is strightforward. For M , the MLE is

M̂k(b) =
1

n

n∑
i=1

m−w+1∑
j=1

(I{si,j+k−1=b}) Pr(Xij = 1|Θ(t)), (4)

where I{si,j=b} is the indicator function, equal to 1 when sequence si contains base b at position j, and 0 otherwise.
The MLE estimate for f is defined analogously as

f̂(b) =
1

n(m− w)

n∑
i=1

m∑
l=1

m−w+1∑
j=1

(I{si,l=b})(I{l /∈[j,j+w−1]}) Pr(Xij = 1|Θ(t)). (5)

Finally, the MLE for the ZOOPS model parameter, γ, is

γ̂ =

∑n
i=1

∑m−w+1
j=1 Pr(Xij = 1|Θ(t))

n
. (6)

2.5 Sequence and diagnostic events motif discovery

CLIP-seq uses UV light to induce cross-links between RBPs and RNA molecules at the point of interaction. A
high density of reads at a given genomic locus indicates that locus is likely to be a binding site. Individual reads can
contain artifacts that localize the cross-link location to a single nucleotide (we call these artifacts "diagnostic events";
see the main manuscript for details of how we extract these from reads). In bringing the locations of diagnostic events
into our algorithm to assist in locating RBP binding sites, we make some simplifying assumptions:

• each sequence comes from a distinct RNA transcript, and every one of these transcripts was cross-linked to
the RBP of interest.
• if an RNA transcript is cross-linked, it will be cross-linked at exactly one location.
• all sequences have equal affinity for the RBP, given that they contain an occurrence of the motif (put another

way, we do not assume some sequences with motif occurrence are more informative than others).

Let Ci be the (unknown) location of the cross-link for the ith sequence. We assume the distances of the motif
occurrences from the cross-link locations (i.e. |Ci − j + g2|, given that Xij = 1) follow a geometric distribution
parameterised by g1. Here, g2 is an offset from the start of the motif occurrence to account for our observation,
from CLIP-seq data, that the most likely cross-link location is not always at the motif start location. It is worth
pointing out that we do not treat C as latent data. We include the number of diagnostic events in each sequence
i at each position j as a fixed parameter of our model, Dij . Hence, the expanded model is defined as follows:
Θ = {M,f, γ, g1, g2, D}. We bring the influence of cross-linking information into our algorithm via the prior on
motif occurrence locations, Pr(X|O,Θ). As such, the form of the complete-data likelihood for the model remains
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unchanged from Equation 1. The only difference is in computing the prior on X , which can be decomposed as

Pr(X|O,Θ) =

n∏
i=1

Pr(Xi|Oi,Θ)

=

n∏
i=1

Pr(Xi|Oi = 1,Θ)Oi Pr(Xi|Oi = 0,Θ)1−Oi

=
n∏
i=1

m−w+1∏
j=1

Pr(Xij = 1|Oi = 1,Θ)Xij . (7)

Notice here that Pr(Xi|Oi = 0,Θ) = 1. As noted above, we assume that the distance of motif occurrences from the
cross-link location follows a geometric distribution; we integrate over all possible cross-link locations, hence

Pr(Xij = 1|Oi = 1,Θ) =
m∑
l=1

Pr(Ci = l|Oi = 1,Θ)
[
g1(1− g1)|l−(j+g2)|

]K
.

Here, K is a tuning parameter that modulates the impact of diagnostic events on the algorithm. Low values (near 0)
reduce the impact of diagnostic events, while higher values increase it. In practice, we set this heuristically using an
exhaustive search of possible values and picking the one that maximized the number of motifs recovered from our
collection of CLIP-seq data. To make sure that we are not over-fitting this parameter, we performed 1000 bootstrap
samples of our data collection and a value of 1.1 proved to be the optimal value. However, this parameter can be
adjusted by users if they wish to do so. Using our selection of current publicly available datasets, the default value
seems to be optimal, however as CLIP experiment improves the users might feel the need to increase this value for
their data sets. The probability of the cross-link location for sequence i being at position l is estimated from the
diagnostic events, so

Pr(Ci = l|Oi = 1,Θ) =
Dij + ε∑m

j′=1(Dij′ + ε)
, (8)

or put less formally, the fraction of diagnostic events observed at that location. Here ε is a pseudo-count to avoid
division by 0 in any sequences with no diagnostic events – in practice we set ε = 1.

2.5.1 Expectation Maximization – E-step

The log-likelihood of the expanded model is easily arrived at by replacing the prior on X in Equation 2 with the one
given by Equation 7, hence

log `(Θ|S,X) =

n∑
i=1

m−w+1∑
j=1

Xij log

(
m∑
l=1

Pr(Ci = l|Oi = 1,Θ(t))
[
g1(1− g1)|l−(j+g2)|

]K)
+ q log γ + (n− q) log(1− γ)

+
n∑
i=1

(1−
∑m−w+1

j=1 Xij)
m∑
l=1

U∑
b=A

νbli log f(b)

+

n∑
i=1

m−w+1∑
j=1

Xij

m∑
l=1

U∑
b=A

νbli log Ψbl′ , (9)
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and so

Q(Θ,Θ(t)) = EX|Θ(t),S(log `(Θ|S,X)) (10)

=
n∑
i=1

m−w+1∑
j=1

Pr(Xij = 1|Θ(t), Si) log

(
m∑
l=1

Pr(Ci = l|Oi = 1,Θ(t))
[
g1(1− g1)|l−(j+g2)|

]K)
+EX|Θ(t),S(q) log γ + (n− EX|Θ(t),S(q)) log(1− γ)

+
n∑
i=1

(1−
∑m−w+1

j=1 EX|Θ(t),S(Xij))
m∑
l=1

U∑
b=A

νbli log f(b)

+

n∑
i=1

m−w+1∑
j=1

EX|Θ(t),S(Xij)
m∑
l=1

U∑
b=A

νbli log Ψbl′ , (11)

where

Pr(Xij = 1|Θ(t), Si) =
Pr(Si|Xij = 1,Θ(t)) Pr(Xij = 1|Θ(t))

Pr(Si|O(t)
i = 0,Θ(t)) Pr(O

(t)
i = 0|Θ(t)) +

∑m−w+1
j′=1 Pr(Si|Xij′ = 1,Θ(t)) Pr(Xij′ = 1|Θ(t))

.

Here Pr(Si|Xij = 1,Θ(t)), Pr(Si|Oi = 0,Θ(t)) and Pr(O
(t)
i = 0|Θ(t)) are computed exactly as in the sequence-

only method. The only change is that

Pr(Xij = 1|Θ(t)) = γ
m∑
l=1

Pr(Ci=l)
[
g

(t)
1 (1− g(t)

1 )|l−(j+g
(t)
2 )|
]K

. (12)

2.5.2 Expectation Maximization – M-step

Maximization of the sequence component of the model, i.e. M , follows the same procedure described in section
2.4.2. With respect to diagnostic events, there are two free parameters of the model that need to be maximized:
g1 and g2. There is no closed form maximum likelihood estimator for either of these parameters. To maximize
g2, we perform an exhaustive search of all possible values in the range −8 ≤ g2 ≤ 8. We maximize g1 by using
the Newton-Raphson algorithm to find the root of the first derivative of Q with respect to g1. This is a numerical
approach that iteratively refines an initial estimate of g1, g(0)

1 as follows:

g
(t)
1 = g

(t−1)
1 − Q′(Φ(t−1),Φ(t−2))

Q′′(Φ(t−1),Φ(t−2))
. (13)

Where Φ(t) = {M̂, f̂ , γ̂, g
(t)
1 , ĝ2, D}. This process continues until Q(Φ(t),Φ(t−1))−Q(Θ(t−1),Θ(t−2)) < ν, where

ν is some fixed precision threshold. Here

Q′(Φ,Φ(t)) =
∂Q(Φ,Φ(t))

∂g1

=

n∑
i

m−w+1∑
j

[
Pr(Xij = 1|Φ(t), Si)

∑m
l=1 Pr(Ci = l|Oi = 1,Φ(t))[KgK−1

1 (1− g1)K|l−(j+g2)| − gK1 (K|l − (j + g2)|)(1− g1)K|l−(j+g2)|−1]∑m
l=1 Pr(Ci = l|Oi = 1,Φ(t))gK1 (1− g1)K|l−(j+g2)|

]

= K
n∑
i

m−w+1∑
j

[
Pr(Xij = 1|Φ(t), Si)(

1

g1
−
∑m

l=1 Pr(Ci = l|Oi = 1,Φ(t))(|l − (j + g2)|)(1− g1)K|l−(j+g2)|−1∑m
l=1 Pr(Ci = l|Oi = 1,Φ(t))(1− g1)K|l−(j+g2)|

)]
, (14)
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and

Q′′(Φ,Φ(t)) =
∂2Q(Φ,Φ(t))

∂(g1)2

= K

n∑
i

m−w+1∑
j

[
Pr(Xij = 1|Φ(t), Si)(

− 1

(g1)2
−

D ∂N
∂g1
−N ∂D

∂g1

(
∑m

l=1 Pr(Ci = l|Oi = 1,Φ(t))(1− g1)K|l−(j+g2)|)2

)]
, (15)

where

N =

m∑
l=1

Pr(Ci = l|Oi = 1,Φ(t))(|l − (j + g2)|)(1− g1)K|l−(j+g2)|−1 (16)

D =

m∑
l=1

Pr(Ci = l|Oi = 1,Φ(t))(1− g1)K|l−(j+g2)| (17)

∂N

∂g1
= −K

m∑
l=1

Pr(Ci = l|Oi = 1,Φ(t))(|l − (j + g2)|)(|l − (j + g2)| − 1)(1− g1)K|l−(j+g2)|−2 (18)

∂D

∂g1
= −K

m∑
l=1

Pr(Ci = l|Oi = 1,Φ(t))(|l − (j + g2)|)(1− g1)K|l−(j+g2)|−1. (19)

In practise, we found that Zagros was relatively insensitive to the choice of g1, but optimizing this parameter in-
creases the asymptotic runtime. As a trade-off, we computed the optimal value of g1 as described above for all of
the CLIP-seq datasets in our collection and found the mode of this distribution. By default, Zagros uses this value
for g1 and does not optimize the parameter, however we still provide an option for the user to maximize g1 via
Newton-Raphson if they wish.

2.6 Sequence and structure motif discovery

From a theoretical standpoint, we consider secondary structure to be an inherent property of the sequences, so
accounting for structure does not introduce any new observed data. We will describe how our model works assuming
structure is fully determined by the sequence; by this we mean that, given a sequence Si, the base-pairing state (paired
or unpaired) of each nucleotide within that sequence can be exactly determined. At the end of this subsection we will
discuss the practicalities of determining the structure of the sequences. In order to account for secondary structure,
we augment M and f as follows:

Mk(b, τ) = Pr
(
b appears at position k in the motif with pairing state τ

)
,

f(b, τ) = Pr
(
b appears in the background with pairing state τ

)
,

where τ ∈ {0, 1}, either paired or unpaired. The form of the complete-data likelihood is unchanged from Equation
1; all that is required is changes in the equations for computing Pr(Si|Xij = 1,Θ) and Pr(Si|Oi = 0,Θ), i.e.

Pr(Si|Xij = 1,Θ) =

m∏
l=1

U∏
b=A

1∏
τ=0

(Ψbljτ )νbliτ

Pr(Si|Oi = 0,Θ) =
m∏
l=1

U∏
b=A

1∏
τ=0

f(b, τ)νbliτ ,

(20)
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where

Ψbljτ =

{
Ml−j+1(b, τ) if j ≤ l ≤ j + w − 1,
f(b, τ) otherwise.

and νbliτ = 1 if base l in sequence i is b and has pairing state τ , and νbliτ = 0 otherwise.

2.6.1 Expectation-maximization – E-step

The log-likelihood is largely unchanged from Equation 2; i.e.

log `(Θ|S,X) =
n∑
i=1

m−w+1∑
j=1

Xij log

(
1

m− w + 1

)
+ q log γ + (n− q) log(1− γ)

+

n∑
i=1

(1−
∑m−w+1

j=1 Xij)

m∑
l=1

U∑
b=A

1∑
τ=0

νbliτ log f(b, τ)

+
n∑
i=1

m−w+1∑
j=1

Xij

m∑
l=1

U∑
b=A

1∑
τ=0

νbliτ log Ψbljτ . (21)

As such, Q(Θ,Θ(t)) is also similar, and is defined as

Q(Θ,Θ(t)) = EX|Θ(t),S(log `(Θ|S,X)) (22)

=
n∑
i=1

m−w+1∑
j=1

EX|Θ(t),S(Xij) log

(
1

m− w + 1

)
+EX|Θ(t),S(q) log γ(t) + (n− EX|Θ(t),S(q)) log(1− γ(t)) +

+

n∑
i=1

(1−
∑m−w+1

j=1 EX|Θ(t),S(Xij))

m∑
l=1

U∑
b=A

1∑
τ=0

νbliτ log f (t)(b, τ)

+
n∑
i=1

m−w+1∑
j=1

EX|Θ(t),S(Xij)
m∑
l=1

U∑
b=A

1∑
τ=0

νbliτ log Ψ
(t)
bljτ , (23)

where, just as previously, EX|Θ(t),S(q) =
∑n

i=1

∑m−w+1
j=1 EX|Θ(t),S(Xij), and EX|Θ(t),S(Xij) = Pr(Xij =

1|Si,Θ(t)). Further, the same form applies for the calculation of the occurrence probabilities, so

Pr(Xij = 1|Si,Θ(t)) =
Pr(Si|Xij = 1,Θ(t)) Pr(Xij = 1|Θ(t))

Pr(Si|Θ(t), Oi = 0) Pr(Oi = 0|Θ(t)) +
∑m−w+1

j′=1 Pr(Si|Xij′ = 1,Θ(t)) Pr(Xij′ = 1|Θ(t))
.

Here we amend the sequence components of the likelihood to account for structure by introducing τ , hence

Pr(Si|Xij = 1,Θ(t)) =

m∏
l=1

U∏
b=A

1∏
τ=0

(Ψ
(t)
bljτ )νbliτ ,

Pr(Si|Oi = 0,Θ(t)) =
m∏
l=1

U∏
b=A

1∏
τ=0

f (t)(b)νbliτ ,

(24)
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where

Ψ
(t)
bljτ =

{
M

(t)
l−j+1(b, τ) if j ≤ l ≤ j + w − 1,

f (t)(b, τ) otherwise.
(25)

The prior probabilities on occurrence of the motif, i.e. Pr(Xij = 1|Θ(t)) and Pr(Oi = 0|Θ(t)) are unchanged from
section 2.4.1.

2.6.2 Expectation-maximization – M-step

Maximizing the ZOOPS model parameter is unchanged from section 2.4.2. Only minor changes are needed to the
maximization step for M and f :

M̂k(b, τ) =
1

n

n∑
i=1

m−w+1∑
j=1

νbjiτ Pr(Xij = 1|Θ(t)), (26)

and

f̂(b, τ) =
1

n(m− w)

n∑
i=1

m∑
l=1

m−w+1∑
j=1

νbliτ (I{l /∈[j,j+w−1]}) Pr(Xij = 1|Θ(t)). (27)

2.6.3 Determining the secondary structure of an RNA sequence

The above description assumes an exact pairing state (paired or unpaired) can be assigned to each nucleotide in each
sequence. One way to do this is to compute the minimum free energy structure for each sequence. However, the
minimum free energy structure can be misleading. In reality, there is an ensemble of folds that a given transcript
may adopt, and each one has a particular probability of occurring. Rather than using point estimates of the pairing
state of nucleotides, we elected to instead use base-pair probabilities to represent structure. The changes to the above
description to facilitate this are trivial: we re-designate the indicator variable νbliτ as follows:

νbliτ = Pr(base l in sequence i has pairing state τ)νbli, (28)

where νbli retains the interpretation of Section 2.4. We calculate these base-pair probabilities using McCaskill’s
algorithm. We used the implementation from the RNA Vienna package [20], modifying its interface to allow its
efficient use and embedding in our package. There are three main reasons (among many others) why we modified
RNAFold, rather than use the original: (1) to allow input either in BED format (with sequences extracted from chro-
mosome fasta files), or in fasta format – RNAFold cannot directly accommodate this; (2) to make the output conform
to the expected input format that Zagros uses; and (3) to efficiently use McCaskill’s algorithm for calculating base
pair probabilities without the overhead of ancillary computations performed by RNAfold that are not required for
Zagros. This is a pre-processing step. Zagros does not do any computational folding. The user is free to compute
base-pair probabilities in any way they wish, though we provide the code we wrote to do the above, and the relevant
code from RNAFold, as a convenience to the user.

2.7 Sequence, structure, and diagnostic events motif discovery

The modifications described in sections 2.5 and 2.6 which respectively include information about crosslinking us-
ing the prior on motif occurrence indicators and include information about secondary structure by expanding the
sequence component of the model are completely orthogonal. As such, it is straight-forward to combine them. The
combined model will be Θ = {M,f, γ, g1, g2, D}, as in Section 2.5, but using the definitions for M and f from
Section 2.6.

11



2.7.1 Expectation-maximization – E-step

The log-likelihood takes the prior on motif occurrences from Equation 9, and the sequence/structure terms from
Equation 21; i.e.

log `(Θ|S,X) =
n∑
i=1

m−w+1∑
j=1

Xij log

(
m∑
l=1

Pr(Ci = l|Oi = 1,Θ(t))
[
g1(1− g1)|l−(j+g2)|

]K)
+ q log γ + (n− q) log(1− γ)

+
n∑
i=1

(1−
∑m−w+1

j=1 Xij)

m∑
l=1

U∑
b=A

1∑
τ=0

νb,l,i,τ log f(b, τ)

+
n∑
i=1

m−w+1∑
j=1

Xij

m∑
l=1

U∑
b=A

1∑
τ=0

νb,l,i,τ log Ψb,l,j,τ . (29)

Hence Q(Θ,Θ(t)) is defined as

Q(Θ,Θ(t)) = EX|Θ(t),S(log `(Θ|S,X))

=

n∑
i=1

m−w+1∑
j=1

Pr(Xij = 1|Θ(t), Si) log

(
m∑
l=1

Pr(Ci = l|Oi = 1,Θ(t))
[
g1(1− g1)|l−(j+g2)|

]K)

+EX|Θ(t),S(q) log γ(t) + (n− EX|Θ(t),S(q)) log(1− γ(t))

+
n∑
i=1

(1−
∑m−w+1

j=1 EX|Θ(t),S(Xij))
m∑
l=1

U∑
b=A

1∑
τ=0

νb,l,i,τ log f (t)(b, τ)

+

n∑
i=1

m−w+1∑
j=1

EX|Θ(t),S(Xij)

m∑
l=1

U∑
b=A

1∑
τ=0

νb,l,i,τ log Ψ
(t)
b,l,j,τ , (30)

2.7.2 Expectation-maximization – M-step

Maximization of the sequence/structure component of the model and the component associated with cross-linking
is orthogonal, hence M and f are maximized as in section 2.6.2; g1 and g2 are optimized as in section 2.5.2.

2.8 Calculating hexamer structural preference in CLIP-seq

First we define target and non-target sets for each CLIP experiment on a particular RBP. For each CLIP-seq dataset
we define a set of target 3’UTRs by binning CLIP-seq reads in 1nt bins (iCLIP) or 20nt bins (PAR-CLIP, HITS-
CLIP), and retained only those bins that could be uniquely assigned to a single transcript. For each 3’UTR we found
the bin with the largest number of reads. We then ranked 3’ UTRs by the count of reads in the bin with the most reads,
and selected the top 1000 3’ UTRs as our target set for that RBP of interest that the CLIP experiment was carried
out on. The non-target set is simply any 3’ UTR regions (as defined by refseq) that are not contained in the target
set. Secondly, we define paired and unpaired states for hexamer occurrences, meaning an occurrence of a hexamer
is called single stranded if and only if the average base pairing probability over k nucleotides is less than 0.5, and
double stranded otherwise. Now, for each hexamer, we obtained the set of occurrences in the whole region of all the
3’UTRs. This comprises our reference sets of occurrences for each hexamer. Then for each hexamer, we calculated
the number of times it appears as double or single stranded in these reference sets. Let’s call these numbers R+

and R− respectively. Then we calculate the same numbers, this time not for all the 3’UTRs but only for target set
of a particular RBP in a CLIP experiment. For each hexamer and each CLIP experiment, let the counts of double
and single stranded occurrences in target 3’UTRs be E+ and E−. For each hexamer and each RBP, the counts of
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double and single stranded occurrences of that hexamer in non-target 3’UTRs are defined as C+ = R+ − E+ and
C− = R− − E−.

Now for each hexamer we can produce a contingency table, with the number of times a hexamer in 3’UTRs
tends to be in paired or unpaired states (C+ and C−), and the number of times this hexamer in relation to binding
to protein is in paired or unpaired states (E+ and E−). The odds-ratio from this contingency table represents the
tendency of the hexamer to appear as either single- or double-stranded in target 3’ UTRs, as opposed to non-target
3’ UTRs. Significance is determined via Fisher’s exact test, which gives us a p-value on the odds-ratio for each
hexamer. To establish what the p-value distribution is under the null hypothesis, we do the same analysis, but select
the target set randomly, rather than using CLIP-seq data. We plotted the distribution of p-values in both cases (CLIP
derived targets, and random targets), and noted a strong enrichment for highly significant p-values was present with
CLIP-derived targets, but not random targets.

2.9 Diagnostic events in iCLIP data

In 1% of iCLIP reads, we detected a deletion, indicating that reverse-transcriptase read through the cross-link loca-
tion. Hence the read is not truncated at the cross-link location and does not have a diagnostic event. In the remaining
99% of the reads, we did not find any deletions, which can either mean that reverse-transcriptase has read through
the cross-link location with no deletion or it has been halted at the cross-link location. Only in the latter case does
the read in fact contain the diagnostic event. Sugimoto et al. [27], using previously published Nova HITS-CLIP and
mRNA-seq, estimated that 82% of the reads are truncated at the cross-link location. More formally, they estimated
f , the proportion of read-through cDNAs in the total Nova iCLIP library, to be 18% according to the following
formula

f =
p(iCLIP)− p(BG)

p(RT)− p(BG)
, (31)

where p(iCLIP) is the proportion of cDNAs with deletions in the first 25 nucleotides for Nova iCLIP data, p(RT)
is the proportion of cDNAs with deletions in the first 25 nucleotides for read-through cDNAs from Nova CLIP data
and p(BG) is the proportion of cDNA with deletions in the first 25 nucleotides of mRNA-Seq cDNAs, which was
used to estimate the background occurrence of deletions. Thus, they estimated that 82% of cDNAs were lost in CLIP
cDNA cloning protocol due to truncations. However, there is no way to distinguish between the truncated reads and
the ones that have read-through without any deletion, using a single iCLIP data set. For simplicity, we considered
all of the reads without deletions to have a diagnostic event at the truncation site.

2.10 Generation of simulated data

2.10.1 Position weight matrix / motif

For each simulated dataset, we generated a random position weight matrix from which motif occurrences were
drawn. For all simulations, the PWMs had length six, and an average information content of 0.5 bits per column
(within a tolerance of 0.005 bits). The target average information content was achieved using a rejection sampling
approach.

2.10.2 Sequence data

We first took the set of all human 3’ UTRs from refseq and collapsed these into non-overlapping genomic regions.
We retained all regions of length greater than 50bp. For each simulation, we selected 500 of these regions randomly,
and for each region randomly selected a 50bp sub-sequence. We also randomly generate a PWM. For each of the
500 sequences, we generated a motif occurrence from the PWM and randomly place this into the sequence.

When imposing structure on a motif occurrence, we select a subsequence either upstream or downstream of
the motif occurrence (with equal probability if the occurrence is sufficiently far from the edge of the sequence,
or specifically one or the other if it is close) such that (1) the selected subsequence has length 10, and (2) the
subsequence does not overlap the motif, but is no more than 15 bases from the motif. We then place the reverse
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complement of this subsequence on the opposite side of the motif such that it also does not overlap the motif, but is
no more than 15 bases from the selected subsequence. In this way, there is high probability that the local sequence
will give rise to a computational fold with a stem loop encompassing the motif occurrence.

2.10.3 Diagnostic events

We consider diagnostic events to have a distance from motif occurrences that follows a geometric distribution.
We also consider that this distance distribution may be centered on a position that is offset from the start of the
occurrence. We call this offset delta. This is also the generative model we use to simulate diagnostic events. For
each simulated dataset, we randomly generate a value for delta (random uniform distribution on −8 to +8 relative
to the motif occurrence start), and a value for the probability parameter of the geometric distribution (also random
uniform in range 0 to 1). For each diagnostic event we place into the dataset, we simulate its location relative to
the selected motif location by drawing a distance from the geometric distribution specified by p, and adding delta to
this. In addition, we consider that some fraction of diagnostic events will be noise. For all simulations performed in
preparing this manuscript, we fixed this fraction at 20%. For noise events, we place the diagnostic event at a position
selected uniformly at random from all loci in the sequence. The number of diagnostic events that were placed into
each sequence was drawn from the empirical distribution of diagnostic event counts in real CLIP-Seq dataset as
follows: we randomly selected a CLIP-Seq dataset and counted the number of diagnostic events that were present in
this dataset within the 50bp region that the sequence was drawn from (see section 2.10.2).

2.11 Evaluating motifs recovered from simulated data

To determine how close to the planted motif a recovered motif was, we calculated the KL-divergence of the re-
covered motif from the planted motif. Rather than reporting raw KL-divergence values though, which are difficult
to interpret, we instead report fractions of the number of simulated datasets on which the motif was successfully
recovered. To determine whether a motif was recovered or not, we established a threshold KL-D value below which
we would consider the motif to be recovered, and above which we would consider that the motif was not recovered.
To find this threshold, we calculated the KL-divergence between the simulated position weight matrix and the set
of all position weight matrices recovered by Zagros from simulated datasets – this allowed us to estimate the back-
ground distribution of KL-divergence values. Using this background distribution, we calculated a p-value for the
motif recovered for each simulated datasets. If the p-value was below 0.05 we considered that the motif had been
recovered, otherwise we considered it not-recovered.

2.12 Evaluating motifs recovered from CLIP-seq data

To evaluate motifs that were recovered from CLIP-Seq data we compiled a set of previously reported consensus
sequences for each RBP (see section 1.2). For each recovered position weight matrix, we converted this into a
consensus sequence by taking the most likely nucleotide at each position. We then determined the best alignment
of this consensus sequence to the previously reported consensus, where best is defined as the alignment with the
maximum matching bases. We allowed gaps only at the start/end of the sequences, not within. All recovered motifs
were hexamers.

2.13 Calculation of sequence-motif specificity

In order to calculate the sequence motif specificity, for each of the motifs found by Zagros, we obtained a consensus
sequence. Then we looked for occurrences of these consensus sequences in the exons defined by refseq. The trend
of sequence specificity is obtained from the fact that more occurrences correspond to low sequence specificity and
vice versa.
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3 Supplementary Results

3.1 Results of CLIP-seq data

Figures S1-S5 show the result of running DME, MD-SCAN and MEME along with Zagros in all four different
modes on all the CLIP data sets we have. We present results for all replicates, though we eliminate those for which
no method was able to recover the expected motif. As shown in these figures, the superiority of Zagros using
sequence, structure and diagnostic events is obvious.

It is worth noting that there are differences in the results recovered by MEME and Zagros using sequence-only
information. This is to be expected. Despite the fact that they use the same model and both employ expectation
maximization, in practice there will be differences in implementation details, not to mention the accumulation of
heuristics and optimizations in MEME as a result of its long history.

Furthermore, there is noticeable variation in the results obtained by all of the programs on datasets for the same
RBP arising from different labs. This is again expected. CLIP-seq is a very challenging assay to perform, and
the skill of the technician is instrumental in achieving a good outcome. It is not surprising then that variability
in data quality also results from this. Some datasets are so clean as to allow identification of the motif almost by
visual inspection, while others are extremely challenging and even with advanced statistical methods it might not be
possible to extract the expected motif above all others. A range of intermediate possibilities also exist. Add to this
minor differences in the laboratory procedures used, and even different cell types in some cases, and it is not at all
surprising that results are variable.
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Figure S1: Top-scoring motifs recovered by Zagros on IGF2BP{1..3} CLIP-seq datasets [9]. For each dataset we
show the motif recovered by DME, MD-SCAN and MEME in addition to each version of Zagros.
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Figure S2: Top-scoring motifs recovered by Zagros on PUM2, QKI [9], hnRNPc [13] and HuR CLIP-seq datasets
(The first HuR is obtained from [21] and the rest is from [16]). For each dataset we show the motif recovered by
DME, MD-SCAN and MEME in addition to each version of Zagros.
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Figure S3: Top-scoring motifs recovered by Zagros on TDP-43 CLIP-seq datasets [28]. For each dataset we show
the motif recovered by DME, MD-SCAN and MEME in addition to each version of Zagros.
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Figure S4: Top-scoring motifs recovered by Zagros on TIA1, TIAL1 [32] and PTB [33] CLIP-seq datasets. For each
dataset we show the motif recovered by DME, MD-SCAN and MEME in addition to each version of Zagros.
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Figure S5: Top-scoring motifs recovered by Zagros on Nova [35] CLIP-seq datasets. For each dataset we show the
motif recovered by DME, MD-SCAN and MEME in addition to each version of Zagros.
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