SUPPLEMENTARY DATA

The High Mobility Group A2 protein epigenetically silences the *Cdh1* gene during epithelial-to-mesenchymal transition

E-Jean Tan, Kaoru Kahata, Oskar Idås, Sylvie Thuault, Carl-Henrik Heldin, and Aristidis Moustakas

SUPPLEMENTARY TABLES

Supplementary Table S1. Oligonucleotides used in quantitative real-time PCR reactions for mRNA analysis.

Gene	Species		Primer Sequence	Product size (bp)	Accession number
Gapdh	mouse		5'- TGTGTCCGTCGTGGATCTGA -3' 5'- CCTGCTTCACCACCTTCTTGA -3'	77	NM_008084
Dnmt1	mouse		5'- CCAAGCTCCGGACCCTGGATGTGT -3' 5'- CGAGGCCGGTAGTAGTCACAGTAG -3'	373	NM_010066
Dnmt3a	mouse		5'- ATGTGGTTCGGAGATGGCAAG -3' 5'- AGATGGCTTTGCGGTACATGG -3'	124	NM_007872
Dnmt3b	mouse		5'- CAAGGAGGCGACAACCGTCCATT -3' 5'- TGTTGGACACGTCCGTGTAGTGAG -3'	221	NM_010068
Cdh1	mouse		5'- GACTGTGAAGGGACGGTCAAC -3' 5'- CCACCGTTCTCCTCCGTAGA -3'	151	NM_009864
MMP1	human		5'- CCAAATGGGCTTGAAGCT -3' 5'- gtagcacattctgtccctaa -3'	100	NM_002421
MMP2	human		5'- AGATGCCTGGAATGCCAT -3' 5'- GGTTCTCCAGCTTCAGGTAAT -3'	107	NM_004530
TIMP1	human		5'- GGGGACACCAGAAGTCAACCAGA -3' 5'- CTTTTCAGAGCCTTGGAGGAGCT -3'	400	NM_003254
TIMP3	human	fwd	5'- CTACACCATCAAGCAGATGAAGAT -3'	455	NM_000362

rev 5'- TCCAGGGGTCTGTGGCATTGAT -3'

TNC	human	fwd 5'- GCTCAACCATCACTGCCAAGT -3' rev 5'- CAGTTTCCGACTGAACCTCAGTAG -3'	81	NM_002160
KLF4	human	fwd 5'- CGACGCGCTGCTCCCATCTT -3' rev 5'- CCGCCAGCGGTTATTCGGGG -3'	97	NM_004235
CDH1	human	fwd 5'- TACGCCTGGGACTCCACCTA -3' rev 5'- CCAGAAACGGAGGCCTGAT -3'	101	NM_004360
HMGA2	human	fwd 5'- GACGTCGGGCATTCATATAGG -3' rev 5'- TTGGTGTTCTAAACAGAGGATTCACT -3'	105	NM_003483
GAPDH	human	fwd 5'- GGAGTCAACGGATTTGGTCGTA -3' rev 5'- GGCAACAATATCCACTTTACCA -3'	78	NM_002046

Supplementary Table S2. Oligonucleotides used in quantitative real-time PCR reactions for chromatin immunoprecipitation assays or in restriction enzyme methylation assays.

Position relative to TSS*		Primer Sequence	Product size (bp)
mouse <i>Cdh1</i> -108/+3 promoter	fwd rev	5'- GGCCCTGCAGTTCCTTGGCT -3' 5'- AGTGAGCAGCGCAGAGGCTG -3'	111
human <i>CDH1</i> -78/+26 promoter	fwd rev	5'- AGGTGAACCCTCAGCCAATCAGCG -3' 5'- AGGTGCTTTGCAGTTCCGACGC -3'	105

^{*}TSS = transcription start site

Supplementary Figure S1 Tan et al

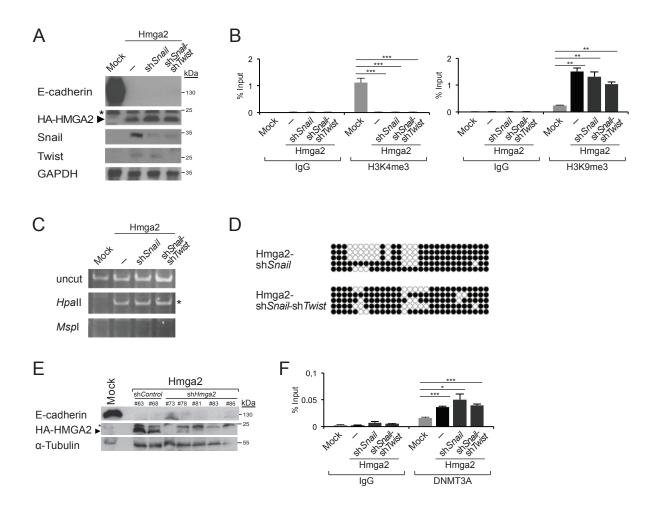


Figure S1: Epigenetic repression of the *Cdh1* promoter by HMGA2 is independent of Snail and Twist. (A) Immunoblots for E-cadherin, HA-tagged HMGA2, Snail and Twist in NM-Mock and NM-Hmga2 and its derivative stable clones (sh Snail and sh Snail-sh Twist). GAPDH serves as loading control. (B) ChIP-qPCR assays of active H3K4me3 and repressive H3K9me3 histone marks on the Cdh1 promoter in cells described in panel A. (C) Hpall-Mspl digestion-methylation assay of the Cdh1 promoter in cells described in panel A. The PCR product was subjected to agarose gel electrophoresis and bands observed after Hpall-digestion indicate that the amplified DNA was methylated (asterisk). (D) DNA methylation status of the Cdh1 promoter in NM-Hmga2 cells depleted of Snail or both Snail and Twist, was analysed by bisulphite sequencing of the *Cdh1* promoter region shown in Figure 1A, and 5 out of 10 clones of each cell line are shown here. White and black circles represent unmethylated and methylated CpG sites respectively. (E) Immunoblots for Ecadherin, HA-HMGA2 (arrowhead) and α-tubulin in NM-Hmga2 cells depleted of HMGA2. Asterisk indicates an unspecific band. (F) ChIP-qPCR analysis with IgG or DNMT3A antibody on the *Cdh1* promoter in cells described in panel A.

Supplementary Figure S2 Tan et al.

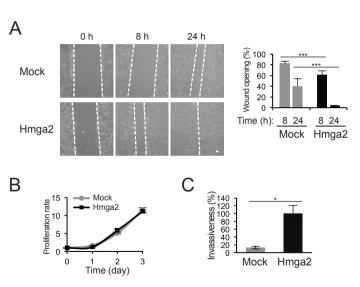


Figure S2: HMGA2 promotes migration and invasion. (A) Light microscopic images of NM-Mock and NM-Hmga2 cells in a wound healing assay at 0, 8 and 24 h after the wound. *Scale bar*, 50 µm. Bar graph shows wound opening at 24 h as a percentage of original wound opening at 0 h (right panel; mean ± SD from 9 fields). (B) MTS assay was performed over 3 days to measure cell proliferation rate in NM-Mock and NM-Hmga2 cells (mean ± SD from 5 replicates). The proliferation rate is measured in arbitrary units (relative, normalised values). (C) Invasion ability of NM-Mock and NM-Hmga2 cells were assayed using a Matrigel transwell assay. The bar graph shows invasion rate relative to NM-Hmga2 cells, which is set to 100% (mean ± SD values from triplicates). The experiments were done at least twice.

Supplementary Figure S3 Tan et al.

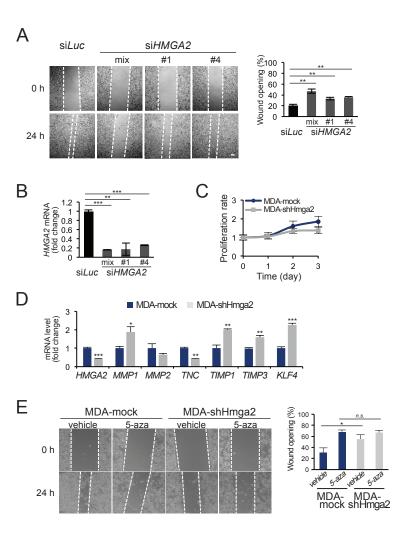


Figure S3. HMGA2 promotes cell migration in breast cancer cells. (A) Wound healing assay in MDA-MB-231 cells transiently transfected with control siRNA (siLuc) or two distinct siRNAs against HMGA2 (#1, #4) and their combination (mix). Bar graph represents the percentage of wound opening at 24 h as a percentage of original wound opening at 0 h (right panel; mean ± SD from three independent measurements). (B) Knockdown efficiency of HMGA2 in cells used in the wound healing assay in panel A and analysed by qPCR (mean ± SD from triplicate values). (C) MTS assay was performed over the course of 3 days, as described in Supplementary Figure S2B, to measure cell proliferation rate in MDA-mock and MDA-shHmga2 cells (mean ± SD from 5 replicates). (D) Expression levels of genes, HMGA2, MMP1, MMP2, TNC, TIMP1, TIMP3 and KLF4, normalised to GAPDH mRNA levels in MDA-mock and MDA-shHmga2 cells. Expression levels in MDAmock cell are normalised to 1. (E) Wound healing assay of MDA-mock and MDAshHmga2 cells treated with vehicle or 5-aza, as described in Figure 2C. Bar graph shows wound opening at 24 h as a percentage of original wound opening at 0 h (right panel; mean \pm SD from 9 fields).

Supplementary Figure S4 Tan et al.

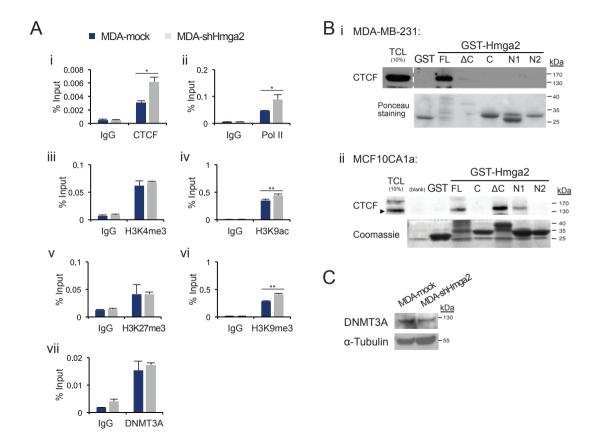


Figure S4. HMGA2 interacts with CTCF in breast cancer cells. (A) ChIP-qPCR analyses of CTCF (i); Pol II (i); H3K4me3 (iii); H3K9ac (iv); H3K27me3 (v); H3K9me3 (vi); and DNMT3A (vii) binding on the CDH1 promoter in MDA-mock and MDA-shHmga2 cells. (B) GST-HMGA2 and its deletion mutants were used in a pull-down assay with parental MDA-MB-231 (i) or MCF10CA1a (ii) cell extracts and immunoblotted for CTCF. Input of GST fusion proteins used in the pull-down were visualised by Ponceau-S or coomassie brilliant blue staining. FL, full-length; ΔC , deletion of C-terminal; N1, N-terminal 1; N2, N-terminal 2; C, C-terminal; TCL, total cell lysate. (C) DNMT3A and GAPDH protein levels in MDA-control and -shHmga2 cells.