Glycosylation of Skp1 Promotes Formation of Skp1/Cullin-1/F-box Protein Complexes in *Dictyostelium*

M. Osman Sheikh, Yuechi Xu, Hanke van der Wel, Paul Walden, Steven D. Hartson, Christopher M. West

SUPPLEMENTAL FIGURES AND TABLE LEGENDS

Suppl. Fig. 1. Interaction of CulE-FLAG with subunits of the COP9 signalosome and the 19S regulatory particle of the proteasome. Strains whose *culE* locus was 3'-FLAG-tagged were immunoprecipitated with anti-FLAG, and the protein composition was analyzed by mass spectrometry. Total spectral counts associated with subunits of the COP9-signalosome (CSN) and the 19S-regulatory particle of the 26S-proteasome (PSM) are shown in panels *A* and *B*, respectively. Base and lid subparticle assignments are inferred from sequence-based annotations in dictyBase.org and ref. 33. Data are from single co-IP experiments, analyzed in triplicate, of growth stage (vegetative) and slug stage (developing) cells. Total spectral counts observed from the 3 analyses are shown here; average spectral counts (total divided by the number of subunits detected) are shown in Fig. 4.

Suppl. Fig. 2. Sequence similarities between *Dictyostelium* CulE and CulA, and Cullin-1. Alignments of human cullin protein sequences, that lie at the interface with substrate binding adaptors or subunits and differentiate mammalian cullins 1-5 (7), with corresponding cullins from *D. melanogaster*, *C. elegans*, and *S. cerevisiae*, are shown. Sequences are aligned using the 'framework' amino acids highlighted in yellow. Other conserved amino acid identities or similarities that differentiate cullin types are highlighted in different colors. The 5 predicted *Dictyostelium* cullins are assigned according to their best matches.

Suppl. Fig. 3. Chaperone proteins interacting with FLAG-FbxD. Hsp- and Cct/TriC-type chaperone proteins that were not detected in control co-IPs are grouped according to class, and plotted according to their abundance based on total or average spectral counts from Suppl. Table 4. Hsp20-like proteins included HspG-1, -2, -4, -5, -6, -7, -8, -9, and -12, HspL and HspM. Cct proteins included Tcp1 and Cct2-8. Protein genes are listed in Suppl. Table 1, annotations are according to www.dictyBase.org, and data are derived from Suppl. Table 4.

Suppl. Table 1. **Observed and predicted SCF-associated proteins in** *D. discoideum*. Proteins identified in the co-IPs shown in Figs. 4-6, listed by protein target. Gene and protein IDs from www.dictyBase.org and UniProt, predicted polypeptide M_r values, functional predictions, and expression levels during growth (0 h) and development (4-24 h), as inferred from RNAseq studies (35), are shown.

Suppl. Table 2. Spectral counts report from CulE-FLAG co-IPs. Summary of data exported from the Scaffold report of the two independent CulE-FLAG co-IPs. Columns in which the CulE-FLAG bait is targeted are shaded in gray; control co-IPs are unshaded. Technical replicates (3 each) reside within the same shading regime. Proteins and peptides (minimum of 2) were each identified at 1% FDR. Only proteins with \geq 2 spectral counts for each of the 3 triplicate analyses in at least one condition are reported. See Fig. 4 and Suppl. Fig. 1 for summary after exclusions were applied.

Suppl. Table 3. **Spectral counts report from Skp1 co-IPs.** Summary of data exported from the Scaffold report of the four independent Skp1 co-IPs. Columns in which Skp1 is targeted are shaded in gray; control co-IPs are unshaded. Technical replicates (3 each) reside within the same shading regime. Proteins and

peptides (minimum of 2) were each identified at 1% FDR. Only proteins with \geq 2 spectral counts for each of the 3 triplicate analyses for at least one condition are listed. See Fig. 5 for summary after exclusions were applied.

Suppl. Table 4. **Spectral counts report from FLAG-FbxD co-IPs.** Summary of data exported from the Scaffold report of the three independent FLAG-FbxD co-IPs. Columns in which the FLAG-FbxD bait is targeted are shaded in gray; those targeting mutant FLAG-FbxD(LP-AA) are in light green; control co-IPs are unshaded. Technical replicates (3 each) reside within the same shading regime. Proteins and peptides (minimum of 2) were each identified at 1% FDR. Only proteins with \geq 2 spectral counts for each of the 3 triplicate analyses for at least one condition are shown. See Fig. 6 and Suppl. Fig. 3 for summary after exclusions were applied.

Supplemental Figure 1

	Helix 2 Region		Helix 5 Region
Cul1 HsCUL-1 DmCUL-1 CeCUL-1 ScCdc53 DdCulA DDCulE DdCulB	(37)MAKSR <mark>YMELYTHVYNYC</mark> TSVH (37)LTRSQYMRFYTHVYDYCTSVS (33)MAPKDYMTLYTSVYDYCTSIT (43)LSPTMYMEVYTAIYNYCVNKS (37)FPKQKWIALYTHVYDYCAASQ (29)LSRKRYMEIYTKIYNYCSSAN (30)SQNVSAMFLYEDVYKLCIAQP	HsCUL-1 DmCUL-1 CeCUL-1 ScCdc53 DdCulA DDCulE DdCulB	(112) ICAYLNRHWV (127) ICNYLNRNWV (107) IFAYLNRHWI (130) AFDYMNRYWV (129) IFQYMNRYWI (105) LLSPVNKIHS (105) IFRYLNLNWI
Cul2 HsCUL-2 DmCG1512 CeCUL-2	(30) <mark>V</mark> ERATWNDR <mark>FSD</mark> I <mark>YALC</mark> VAYP (30) <mark>V</mark> ERSVWNTS <mark>FSDVYTLC</mark> VAQP (30)ITNVQWHHK <mark>FSD</mark> V <mark>Y</mark> D <mark>IC</mark> VSIP	HsCUL-2 DmCG1512 CeCUL-2	(104) <mark>LYRYLN</mark> TQFI (113)LYI <mark>YLN</mark> QQHI (106) <mark>LFGYLN</mark> KQFV
Cul3 HsCUL-3 DmGFT CeCUL-3 SccullinB DdCulC	(49)NSG <mark>LSFE</mark> ELYRNAYTMVLHKH (47)NSGLSFEQLYRNAYNMVLHKH (46)NSGLSFEELYRNAYTMVLHKH (41)MADLSFEQVYKTIYTIVLNKK (45)ASNLSFEELYRNGYNMVLQKH	HsCUL-3 DmGFT CeCUL-3 SccullinB DdCulC	(122) <mark>ILMYMDR</mark> VYV (120) <mark>ILMYMDR</mark> VYV (119)ILMYMDRIYV (117)LMMYMDKVYC (117) <mark>ILMYMDR</mark> NYV
Cul4 HsCUL-4B DmCG8711 (CeCUL-4 (DdCulD	(99)SIKYNLEELYQAVENLCSYKI 128)PIKYSLEELYQAVVNMCSHKM 100)KTVTTLEGLFSKVRSVCDKNQ (86)ATTLTQEELYKMVENLCFDKI	HsCUL-4B DmCG8711 CeCUL-4 DDCulD	(173) <mark>IFLFLDR</mark> TYV (204) <mark>IFLYMDRTY</mark> V (180) <mark>IFLHLDR</mark> IAL (162) <mark>IFLYLDR</mark> TYV
Cul5 HsCUL-5 DmCG1401 CeCUL-5	(35) <mark>VTKQQWFDLFSDV</mark> HAVCLWDD (33)VSQREWQDLFFGVHFVCLWDE (23)VTPAAWQDLFYHVYKITSWVD	HsCUL-5 DmCG1401 CeCUL-5	(110) <mark>PFCQLEITLM</mark> (108) <mark>PFRQLEQSPQ</mark> (98) <mark>PFKK<mark>ID</mark>ESSR</mark>

Supplemental Figure 3

