Supplementary Tables and Plasmid Construction

Strain	Genotype	Reference
BJH001	PY79 (wild-type)	(1)
BQA003	$\Delta y j b M$::erm	This work
BQA006	$\Delta ywaC::erm$	This work
BQA009	$\Delta relA::spec$	This work
BQA010	$\Delta relA::erm$	This work
BQA022	$\Delta sigD::tet$	(2)
BQA046	$amyE::P_{hag}-lacZ(cat)$	This work
BQA047	$amyE::P_{lvtA}-lacZ$ (cat)	This work
BQA050	$amyE::P_{lvtA}$ -lacZ (cat), $\Delta relA::spec$	This work
BQA051	$amyE::P_{lytA}-lacZ (cat), \Delta relA::spec$ $hag^{HagT209C}$	This work
BQA057	hag ^{HagT209C}	This work
BQA059	$\Delta relA::spec / \Delta sigD::tet$	This work
BQA062	$hag^{HagT209C}$, $\Delta relA$::spec	This work
BQA067	amyE::P _{relA} -relA (spec)	This work
BQA068	$amyE::P_{relA}$ -relA (spec), $\Delta relA::erm$	This work
BQA071	$amyE::P_{hag}$ -lacZ (cat), $\Delta sigD::tetR$	This work
BQA072	$amyE::P_{lvtA}$ -lacZ (cat), $\Delta sigD::tetR$	This work
BQA073	$amyE::P_{hag}$ -lacZ (cat), sacA:: P_{relA} -relA (spec), Δ relA::erm	This work
BQA074	$amyE::P_{lvtA}-lacZ$ (cat), $sacA::P_{relA}-relA$ (spec), $\Delta relA::erm$	This work
BQA075	$sacA::P_{relA}$ -relA (spec), $\Delta relA::erm$	This work
BQA076	$\Delta hag::erm \\ hag^{HagT209C}, amyE::P_{relA}-relA (spec), \Delta relA::spec$	Bacillus Genetic Stock Center
BQA080	$hag^{Hag1209C}$, $amyE::P_{relA}$ -relA (spec), Δ relA::spec	This work
BQA081	ΔretA::spec, ΔyjbM::erm	This work
BQA082	$\Delta relA::spec, \Delta ywaC::erm$	This work
BQA083	$amyE::P_{hv}-sigD$ (kan), $\Delta sigD::tet$, $\Delta relA::erm$	This work
BQA084	$amyE::P_{hag}-lacZ$ (cat), $\Delta sigD::tetR$, $\Delta relA::spec$	This work
BQA085	$amyE::P_{lvtA}-lacZ$ (cat), $\Delta sigD::tetR$, $\Delta relA::spec$	This work
BQA086	$amyE::P_{hag}-lacZ$ (cat), $\Delta relA::spec$, $\Delta yjbM::erm$	This work
BQA087	$amyE::P_{lvtA}-lacZ$ (cat), $\Delta relA::spec$, $\Delta yjbM::erm$	This work
BQA088	$amyE::P_{hag}-lacZ$ (cat), $\Delta relA::spec$, $\Delta ywaC::erm$	This work
BQA089	$amyE::P_{lvtA}-lacZ$ (cat), $\Delta relA::spec$, $\Delta ywaC::erm$	This work
DS874	$amyE::P_{hv}$ -sigD (kan)	Daniel B. Kearns
EUB004	$trpC2 \Delta relA::erm, aprE::Pspac-relA_{D264G} (spec)$	(3)

 Table S1:
 Strains used in this study

Table S2: Plasmids used in this study

Plasmid	Description	Reference
pDR111	amyE::Phyperspank (spec) (amp)	David Z. Rudner
pMiniMAD2	ori ^{BsTs} (amp) (erm)	(4)
pDG1661	amyE::lacZ (cat)	Bacillus Genetic Stock Center
pJW053	$\Delta y j b M$::spec	This work
pJW054	$\Delta relA::spec$	This work
pJW055	$\Delta y j b M$::erm	This work
pJW058	$\Delta relA::erm$	This work
pJW063	$\Delta ywaC::spec$	This work
pJW064	$\Delta ywaC::erm$	This work
pKM079	B. subtilis chromosomal integration vector (spec)	David Z. Rudner
pKM082	B. subtilis chromosomal integration vector (erm)	David Z. Rudner

pQA014	$amyE::P_{lytA}-lacZ$ (cat)	This work
pQA015	$amyE::P_{hag}-lacZ(cm)$	This work
pQA017	hag ^{HagT209C}	This work
pQA020	$\Delta amyE::P_{relA}$ -relA (spec)	This work

Table S3: Oligonucleotides used in this study

Primer	Sequence (5' to 3')
oJW052	GGCCGGCCGTGCTCTTCCTTTCCGCCCTGT
oJW053	CATGTCGACTCCCCCAATTCCGAACCAGTT
oJW054	GCAGGATCCGGTAAAGGGGAAGAAGAGCATG
oJW055	GATGAATTCTCCGCCCAGCGCCTTATT
oJW056	GAACGGCCGGGCTTTATTATCGGCTGTCCC
oJW057	CAAGTCGACTTCGTTCGCCATGGAATCACC
oJW058	GTCGGATCCTAAAGGGGTTAGAAAAGAGATTAGTTG
oJW059	CAAGAATTCCCAAGAAAAAGTAACAGATGG
oJW066	GATCGGCCGTCTTGTCGGCGCGATTAA
oJW067	AGAGTCGACCATGTTCGTCATCTCCTTTAA
oJW068	GAAGGATCCTAAAAAAGACGGCACCCA
oJW069	CTCGAATTCCTATGTAGATCATCTATCGGA
oQA063	CAGTCGAATTCTGAAGGGGATCAAGTGAAGC
oQA064	GATAAGGATCCCGCTGCAATATTGTGGTTA
oQA065	CAGTCGAATTCAGTATGCATAGCCGCCAGTT
oQA066	GATAAGGATCCGCAACCCGAAAGAAGCAATA
oQA077	AGGAGGAATTCTCTCCGCATTATCCTCACAAAAAAAG
oQA078	GCATCGAAACCGATATCAGCACAATCTGCTGCATTATCTGC
oQA079	GCAGATAATGCAGCAGATTGTGCTGATATCGGTTTCGATGC
oQA080	CTCCTGGTACCTGAGGAATGATTAGGAGATAGAAATTT
oQA094	CAGTCGAATTCCCTTGACGGCAGAAATAAGC
oQA095	GATAAGGATCCACGACCTCTTCGTCCACTGT

Plasmid and strain construction

*PY79 genomic was used to amplify PCR products for cloning. All marked deletion strains were confirmed by PCR.

hag^{*HagT209C*}. To replace the *hag* gene with a mutant version (T209C), the region upstream of codon 209 of *hag* gene was PCR-amplified using the primer pair oQA77/78 and the region downstream of codon 209 of *hag* gene was PCR-amplified using the primer pair oQA79/80. The two PCR products were used as template for overlap extension PCR with primer pair oQA77/80. The amplified fragment was cut with EcoRI and KpnI and cloned into pMiniMAD cut with the same enzymes. The plasmid pQA017 was introduced to the PY79 background by single cross-over integration,

propagated in the absence selection, and plated on LB agar. Colonies were patched to identify MLS sensitive colonies and the *hag* region was sequenced to identify a strain harboring the mutation.

pJW053 [∆*yjbM::spec*] was generated by cloning PCR product from oJW054 and oJW055 (EcoRI-BamHI) into pKM079, then introducing PCR product from oJW052 and oJW053 (EagI-SaII).

pJW054 [Δ*relA::spec*] was generated by cloning PCR product from oJW056 and oJW057 (EagI-SalI) into pKM079, then introducing PCR product from oJW058 and oJW059 (EcoRI-BamHI).

pJW055 [$\Delta yjbM::erm$] The SalI-BamHI spectinomycin cassette fragment of pJW053 was replaced with the SalI-BamHI fragment from pKM082 encoding the erythromycin resistance cassette (erm).

pJW058 [Δ *relA::erm*] The SalI-BamHI spectinomycin cassette fragment of pJW054 was replaced with the SalI-BamHI fragment from pKM082 encoding the erythromycin resistance cassette (erm).

pJW063 [Δ*ywaC::spec*] was generated by cloning PCR product from oJW066 and oJW067 (EagI-SalI) into pKM079, then introducing PCR product from oJW068 and oJW069 (EcoRI-BamHI).

pJW064 [$\Delta ywaC::erm$] The SalI-BamHI spectinomycin cassette fragment of pJW063 was replaced with the SalI-BamHI fragment from pKM082 encoding the erythromycin resistance cassette (erm)

pQA014 [*amyE*::P_{*lytA}-<i>lacZ* (*cat*)] was generated in a two-way ligation with a PCR product containing the promoter region of *lytA* (primer pair oQA65/66 and PY79 genomic DNA as template) cut with EcoRI and BamHI and pDG1661 cut with the same enzymes. pDG1661 [*amyE*::*lacZ* (*cat*)] is an ectopic integration vector.</sub>

pQA015 [*amyE::*P_{*hag}-<i>lacZ* (*cm*)] was generated in a two-way ligation with a PCR product containing the promoter region of *hag* (primer pair oQA63/64 and PY79 genomic DNA as template) cut with EcoRI and BamHI and pDG1661 cut with the same enzymes.</sub>

pQA017 [*hag*^{*HagT209C*}] was generated by overlap extension PCR. The region upstream of codon 209 of *hag* gene was PCR-amplified using the primer pair oQA77/78 and the region downstream of codon 209 of *hag* gene was PCR-amplified using the primer pair oQA79/80. The two PCR products were used as template for overlap extension PCR with primer pair oQA77/80. The amplified fragment was cut with EcoRI and KpnI and cloned into pMiniMAD cut with the same enzymes.

pQA020 [*amyE::*P_{*relA*}-*relA* (*spec*)] was generated in a two-way ligation with a PCR product containing the promoter and the coding region of *relA* (primer pair oQA94/95 and PY79 genomic DNA as template) cut with EcoRI and BamHI and pDR111 cut with the same enzymes.

REFERENCES

- 1. Youngman PJ, Perkins JB, Losick R. 1983. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proceedings of the National Academy of Sciences of the United States of America 80:2305-2309.
- 2. **Kearns DB, Losick R.** 2005. Cell population heterogeneity during growth of Bacillus subtilis. Genes & development **19:**3083-3094.

- 3. Nanamiya H, Kasai K, Nozawa A, Yun CS, Narisawa T, Murakami K, Natori Y, Kawamura F, Tozawa Y. 2008. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Molecular microbiology 67:291-304.
- 4. **Patrick JE, Kearns DB.** 2008. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Molecular microbiology **70**:1166-1179.