Supplemental Material

Supplemental Tables

Table S1. Strains used in this study.

Strain	Genotype	Reference
<i>E. coli</i> strains		
S17-1λ <i>pir</i>	Wild-type	(1)
BL21(DE3)	Wild-type	Life Technologies
DH10B	Wild-type	Life Technologies
<i>V. harveyi</i> strains		
BB120	Wild-type	(3)
BB721	∆ <i>luxO::kan^R</i> (Kanamycin resistance gene)	(4)
JAF548	luxO D47E::kan ^R	(4)
KM669	∆luxR	(2)
JC2212	∆betl	This study
JC2216	∆luxO::kan ^R ∆betl	This study
JC2214	luxO D47E::kan ^R ∆betl	This study
JC2194	Δqrr 1-5 $\Delta luxR \Delta betl$	This study
JS202	$\Delta qrr1-5 \Delta luxR$	(5)
JV48	Δ aphA	(5)

Table S2. Plasmids used in this study.

Name	Description	Reference
pET28b	Expression vector, 6x-His, <i>kan^R</i>	Novagen
pEVS143	P _{tac} promoter vector, p15a origin, <i>kan^R</i>	(7)
pJC420	<i>betI</i> region (~2.5 kbp upstream and 2.5 kbp downstream of the <i>betI</i> ORF) in pLAFR2	This study
pJC430	<i>betI</i> deletion cosmid constructed from pJC420. The <i>betI</i> gene was deleted by replacement with a chloramphenicol cassette (cm^R) using recombineering (8). The cm^R was removed by FLP-mediated recombination (9). An ~100 bp scar remains at the site.	This study
pJV021	<i>cm^R</i> removed from the <i>gfp-cm^R</i> expression cassette in pEVS143	This study
pJV036	P _{tac} promoter vector, CoIE1 origin, <i>kan^R</i>	(10)
pJV079	LuxR in pET28b for expression	(10)
pJV239	P _{tac} -luxR, in pJV036	(10)
pJV298	<i>cm^R</i> cloned in place of <i>kan^R</i> in pJV021	This study
pJV299	<i>cm^R</i> cloned in place of <i>kan^R</i> in pSQ005	This study
pJV302	betIBA-proXWV operon and promoter region in pLAFR2	This study
pJV305	LuxR BS1 deleted in pJV300	This study
pJV306	LuxR BS2 deleted in pJV300	This study
pKM699	pLAFR2 containing <i>luxR</i> from a 2.3-kbp HindIII fragment	(11)
pLAFR2	Cosmid vector used for constructing mutant strains of V. harveyi	(12-14)
pSQ004	His-betl in pET28b for expression	This study
pSQ005	P _{tac} -betl in pEVS143	This study

Table S3. Oligonucleotides used in this study.

Name	Sequence	Notes
hfq qRT-PCR Forward	CGTGAGCGTATCCCGGTATCTAT	
hfq qRT-PCR Reverse	TTGCAGTTTGATACCGTTCACAAG	JCV737
qrr1 qRT-PCR Forward	CTCGGGTCACCTATCCAACTGA	
qrr1 qRT-PCR Reverse	TCGGATCTATTGGCTCGTTCTG	
qrr2 qRT-PCR Forward	CAATTAGGGCGATTGGCTTATGT	
qrr2 qRT-PCR Reverse	CTTAAGCCGAGGGTCACCTAGC	
qrr3 qRT-PCR Forward	ACAAATTCGAGTCCACTAACAACGT	
qrr3 qRT-PCR Reverse	CTTAAGCCGAGGGTCACCTAGC	
qrr4 qRT-PCR Forward	GTTGATTGGCGGTATATACTTGTG	
qrr4 qRT-PCR Reverse	CCTTATTAAGCCGAGGGTCAC	
qrr5 qRT-PCR Forward	GACGTTGTTAGTGAACCCAATTGTT	
qrr5 qRT-PCR Reverse	CACAAGGTTTGTGATTGGCTGTATA	
aphA qRT-PCR Forward	GATTGAAGACATGTCATTACCACAC	JCV743
aphA qRT-PCR Reverse	GAAGTAACCGATGCTAGCTGA	JCV744
luxC qRT-PCR Forward	TGTTCATTTAACTCAGATGGTGACT	
luxC qRT-PCR Reverse	TTCTTCTTGAATACTCTTCGCTCTT	
luxO qRT-PCR Forward	GCATTCCTGATCTTATTCTGCTCG	
luxO qRT-PCR Reverse	TCCATCCCCGTCATATCAGGTA	
luxR qRT-PCR Forward	GCAAAGAGACCTCGTACTAGG	JCV745
luxR qRT-PCR Reverse	GCGACGAGCAAACACTTC	JCV746
qRT-PCR 06176 Forward	ATGGATGCAATTACGATTGAAAACC	SQ096
qRT-PCR 06176 Reverse	TAAATCCAGCCTCCTTCGTG	SQ097
qRT-PCR 06177 Forward	GTGAATTTTATTACGGACAACAAACTTCC	SQ098
qRT-PCR 06177 Reverse	TACACCGCAGCATTCCTTT	SQ099
qRT-PCR 06178 Forward	ATGACAAAAATCTTTTCATCTATCGCG	SQ100
qRT-PCR 06178 Reverse	TAACTGGATGCCAACCATGG	SQ101
qRT-PCR 06179 Forward	GACAAGAGCATCTTCATTCAAATGC	SQ021
qRT-PCR 06179 Reverse	GTCTAACCCCTCTTCCGC	SQ022
qRT-PCR 06180 Forward	GCGAATGTGAAGCAGGC	SQ019
qRT-PCR 06180 Reverse	TTTGCCCGTATCTGCCA	SQ020

qRT-PCR 06181 Forward	GTTGGGATGCCTGAAATCAGA	JCV339
qRT-PCR 06181 Reverse	GCTTCTTTGCTGATCAACGAG	JCV340
P _{betl} Reverse	CAACCTTGGGCATTTTACATCCTTGTTATTTTTAATTG	SQ94
P _{betl} Forward	CCTTCACTCAATTGACAATTCTAAAAGTAAAACGTGCTGAAATTAT	SQ113
P _{betl} A	CCTTCACTCAATTGACAATTCTAAAAGTAAAACGTGCTGAAATTA	JCV977
P _{betl} A	TAATTTCAGCACGTTTTACTTTTAGAATTGTCAATTGAGTGAAGG	JCV978
P _{betl} B	GCTGAAATTATTTGAGTTCATTGTATTTGTCTTTATTTAT	JCV979
P _{betl} B	AAAGTATAAATAAAGACAAATACAATGAACTCAAATAATTTCAGC	JCV980
P _{betl} C	TTTATACTTTTGATGCGCACGAATTGCTCATGAGCTGGTATCTCT	JCV981
P _{betl} C	AGAGATACCAGCTCATGAGCAATTCGTGCGCATCAAAAGTATAAA	JCV982
P _{betl} D	TGGTATCTCTATAACTTGCATTAAATGTAGTTTAGTTTCTGATTA	JCV983
P _{betl} D	TAATCAGAAACTAAACTACATTTAATGCAAGTTATAGAGATACCA	JCV984
P _{betl} E	TTTCTGATTATTATGGTTTTTGTTTTTCTGTTTTTACGTGTTAAA	JCV985
P _{betl} E	TTTAACACGTAAAAACAGAAAAACAAAAACCATAATAATCAGAAA	JCV986
P _{betl} F	ACGTGTTAAATCTTCGTAAAATCTATCTTTTCTCAAGTTTTAGTA	JCV987
P _{betl} F	TACTAAAACTTGAGAAAAGATAGATTTTACGAAGATTTAACACGT	JCV988
P _{betl} G	AGTTTTAGTAATGATTGTAGTCGAAATGATTCGGCTGTATCTGTC	JCV989
P _{betl} G	GACAGATACAGCCGAATCATTTCGACTACAATCATTACTAAAACT	JCV990
P _{betl} H	TGTATCTGTCATTTTTTCTAGATAATTAGTTTGAGTTAGAACTAA	JCV991
P _{betl} H	TTAGTTCTAACTCAAACTAATTATCTAGAAAAAATGACAGATACA	JCV992
P _{betl} I	TTAGTTTGAGTTAGAACTAAATTTAAGGCATTTTA	JCV993
P _{betl} I	TAAAATGCCTTAAATTTAGTTCTAACTCAAACTAA	JCV994
P _{betl} J	AGGCATTTTATATTTAACTAACCGTTCAATTAAAAATAACAAGGA	JCV995
P _{betl} J	TCCTTGTTATTTTAATTGAACGGTTAGTTAAATATAAAATGCCT	JCV996
P _{betl} K	ATAACAAGGATGTAAAATGCCCAAGGTT	JCV997
P _{betl} K	AACCTTGGGCATTTTACATCCTTGTTAT	JCV998
recA Forward	CAATAAACGCACAAGTTTTGCCTTC	SQ110
recA Forward	ATGAATAAATCGGAGAAAGTAATGGACGA	SQ104
P _{qrr3} Forward	ATCATTAGCATTATAATTACAAATTGCA	STR725
P _{qrr3} Reverse	ATGATGCAGTTAGTGTGCCAACTT	STR726
P _{qrr4} Forward	TTTCTTATTAAAACGCCATTTTTCTGATA	STR727
P _{qrr4} Reverse	AGCACGATGCGTGCCAACTTT	STR422

-

P _{bet/} LuxR binding site 1	CACTCAATTGACAATTCTAAAAGTAAAACGT	JCV424
P _{bet/} LuxR binding site 1	ACGTTTTACTTTTAGAATTGTCAATTGAGTG	JCV425
P _{bet/} LuxR binding site 2	TTTTATATTTAACTAACCGTTCAATTAAAAAT	JCV426
P _{bet/} LuxR binding site 2	ATTTTTAATTGAACGGTTAGTTAAATATAAAA	JCV427

Supplemental References

- 1. **de Lorenzo V, Timmis KN.** 1994. Analysis and construction of stable phenotypes in gramnegative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol **235**:386-405.
- 2. **Pompeani AJ, Irgon JJ, Berger MF, Bulyk ML, Wingreen NS, Bassler BL.** 2008. The *Vibrio harveyi* master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. Mol Microbiol **70**:76-88.
- 3. **Bassler BL, Greenberg EP, Stevens AM.** 1997. Cross-species induction of luminescence in the quorum-sensing bacterium *Vibrio harveyi.* J Bacteriol **179:**4043-4045.
- 4. **Freeman JA, Bassler BL.** 1999. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in *Vibrio harveyi*. Mol Microbiol **31**:665-677.
- 5. **Rutherford ST, van Kessel JC, Shao Y, Bassler BL.** 2011. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev **25**:397-408.
- 6. **Skerra A.** 1994. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in *Escherichia coli*. Gene **151**:131-135.
- 7. **Dunn AK, Millikan DS, Adin DM, Bose JL, Stabb EV.** 2006. New rfp- and pES213-derived tools for analyzing symbiotic *Vibrio fischeri* reveal patterns of infection and *lux* expression in situ. Appl Environ Microbiol **72**:802-810.
- 8. **Datsenko KA, Wanner BL.** 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci U S A **97**:6640-6645.
- 9. Long T, Tu KC, Wang Y, Mehta P, Ong NP, Bassler BL, Wingreen NS. 2009. Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol **7**:e68.
- 10. **van Kessel JC, Rutherford ST, Shao Y, Utria AF, Bassler BL.** 2013. Individual and Combined Roles of the Master Regulators AphA and LuxR in Control of the *Vibrio harveyi* Quorum-Sensing Regulon. J Bacteriol **195**:436-443.
- 11. Waters CM, Bassler BL. 2006. The *Vibrio harveyi* quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev **20**:2754-2767.
- 12. **Ditta G, Stanfield S, Corbin D, Helinski DR.** 1980. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of *Rhizobium meliloti*. Proc Natl Acad Sci U S A **77**:7347-7351.
- 13. **Figurski DH, Helinski DR.** 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided *in trans.* Proc Natl Acad Sci U S A **76:**1648-1652.
- 14. Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM. 1982. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of *Rhizobium* mutants. Gene **18**:289-296.

Figure S1. (*A*) Transcript levels of *betl* measured by microarrays are shown for *V. harveyi* wild-type (BB120) and *V. harveyi* Δ*luxR* (KM669) and were determined previously (8). (*B*) Transcript levels of *betlBA-proXWV* genes were assayed by qRT-PCR in *V. harveyi* in the following strains induced with 10 μM IPTG: Δ*luxO* carrying a control vector (BB721::pJV298), Δ*luxO* Δ*betl* carrying a control vector (JC2216::pJV298), and Δ*luxO* Δ*betl* carrying a vector expressing *betl* from an IPTG-inducible promoter (JC2216::pJV299). Error bars represent the standard error of measurement from three biological replicates, and these data represent two independent experiments. (*C*) Alignment of the predicted Betl binding site sequences for *V. harveyi* (Vh) and *E. coli* (Ec) with EMSAs. The location of the predicted Betl binding site overlaps LuxR binding site 2 (BS2, see Figure 2, main text). The positions of the binding sites, transcription start sites, and -35 site (gray box) are indicated relative to the translation start codon of *betl*. Asterisks indicate nucleotide identity. EMSAs contain 0 nM (-) or 1000 nM (+) His-Betl incubated with radiolabeled DNA substrates corresponding to the fragments A through K in the diagram.

Figure S2. (*A*, *B*, *D*) Transcript levels of *aphA* (*A*), *luxR* (*B*), and *luxO* (*D*) were assayed by qRT-PCR in *V. harveyi* strains induced with 1 mM IPTG. Error bars represent the standard error of measurement from three biological replicates, and these data represent two independent experiments. The strains are: (*A*,*D*) *V. harveyi luxO* D47E carrying a control vector (JAF548::pJV298) and carrying a vector expressing *betI* from an IPTG-inducible promoter (JAF548::pJV299); (*B*) The *V. harveyi ΔluxO* strain carrying a control vector (BB721::pJV298) and carrying a vector expressing *betI* from an IPTG-inducible promoter (BB721::pJV299). (*C*) EMSAs with His-BetI incubated with radiolabeled DNA substrates corresponding to the *recA* ORF (300 bp), the *qrr*3 promoter (P*qrr*3; 133 bp), or the *qrr*4 promoter (P*qrr*4; 177 bp). The reactions for *recA* and P*qrr*4 contained 0, 1000 nM, 2000 nM, 4000 nM, 6000 nM, or 8000 nM His-BetI, and the reactions for *qrr*3 contained 0, 250 nM, 500 nM, 1000 nM, and 5000 nM His-BetI.

Figure S3. *V. harveyi* strains were grown in LOM containing choline and 0.2 M, 0.5 M, or 1 M NaCl. Strains are *V. harveyi* wild-type (BB120), Δ*luxO* (BB721), *luxO* D47E (JAF548), Δ*aphA* (JV48), Δ*luxR* (KM669), and Δ*betI* (JC2212).