
Supplemental Methods 
Mutual Information of Partitions 
Mutual information of partitions (MIP) measures the similarity of two partitions of the 
same set, e.g. two independent clusterings of the genome into gene expression modules. 
MIP is maximized when two partitions are equal to each other and minimized when they 
are statistically independent of one another (Figure S2A). For more information about 
mutual information and its properties consult the excellent and comprehensive book [1] 
and for a comparison of mutual information based similarity to alternative similarity 
measures on the space of partitions of a finite set see [2]. 
 
Given two partitions P1 and P2 of a set S, mutual information quantifies the correlation of 
their cluster labels. Intuitively, MIP measures the sizes of the overlaps between clusters 
from P1 and P2 relative to the expected overlap size if the cluster labels were independent 
of each other. Mathematically MIP is defined as 
 

 

 
Inspection of the summands in the above formula shows that the logarithmic factors are 
large and positive when the probability of a randomly drawn element of S being co-
labeled by i and j is higher than expected under the assumption that the labels are 
independent. Likewise, the logarithmic factors are zero when the probability of co-
labeling i and j is exactly the same as random and negative when the labels i and j 
“avoid” each other. The other factor in the summands is the joint probability of being co-
labeled by i and j. If this factor is large, then the overlap of the ith and jth clusters is large. 
Taken together these two factors give high weight to cluster overlaps that are large 
relative to the expectation of independent labels as well as absolute size relative to S. 
Thus, mutual information is well suited for use as a similarity measure between partitions 
because it incorporates both relative and absolute measures of the size of the overlap 
between two clusters.  
	  
Mutual	   information	  of	  partitions	   is	  distinguished	   for	  consensus	  clustering	  because	  
of	   the	   mutual	   exclusivity	   of	   gene	   annotations	   to	   modules.	   A	   gene	   is	   always	  
annotated	  to	  exactly	  one	  WGCNA	  module.	  At	   first	  glance,	  MIP	   is	  a	  sum	  of	  pairwise	  
mutual	   information	   scores	   between	   two	   binary	   random	   variables:	  
presence/absence	  of	  a	  gene	   in	  clusters	  Ci	   and	  Cj.	  The	   fact	   that	  our	  clusters	   form	  a	  
partition	   forces	   dependency	   between	   the	   pairwise	   scores.	   The	   scores	   are	   not	  
independent;	  moving	  a	  gene	  from	  one	  module	  to	  another	  must	  change	  many	  overlap	  
scores.	   This	  means	   that	   p-‐values	   constructed	   using,	   say,	   hypergeometric	   tests	   for	  
each	   pair	   of	   modules	   would	   yield	   correlated	   p-‐values	   and	   require	   a	   complicated	  
multiple	  testing	  correction.	  The	  MIP	  framework	  allows	  us	  to	  sidestep	  that	  elegantly	  
using	  a	  natural	  thresholding	  method	  (see	  below).	  
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Construction	  of	  the	  Information	  Graph	  
The summands of Equation 1 is interpreted as a significance measure for the overlap of 
two clusters. Let Ci be a cluster in P1 and Cj be a cluster in P2. We define the 
“information weight” Wij as 
 

 

 
where N = |S|, the total number of genes in the genome. Wij is simply a single summand 
of Equation 1. We interpret Wij's as edge weights in a bipartite graph whose nodes are the 
clusters in P1 and P2. (The graph is bipartite because we assume clusters do not overlap 
within a partition and we use the convention that 0 log2(0) = 0. Thus, there are no 
nonzero edges between clusters from the same partition.) For more than two partitions, 
we compute all pairwise W-scores and construct a k-partite graph in the same way we 
constructed the bipartite graph. 
 
The W-scores can be negative and most are very small, indicating insignificant overlap 
between clusters. The scores below a threshold were set to zero. The W-scores were 
thresholded by computing the cumulative sum of the W-scores and keeping only the 
scores above the point where the sum becomes positive (Figure S2B red curve). For the 
current study, the information graph is the 3-partite graph obtained by computing all W-
scores as above and setting all those scores that fell below the threshold to zero (Figure 
S2C). 
 
We also compare the W-scores to the raw overlap sizes (i.e. the cardinality of the 
intersection between modules) in Figure S2C. The W-scores are correlated to the overlap 
sizes, but there is significant spread, particularly at the low end, indicating that the two 
measures disagree about which pairs deserve “small” scores. Because the W-score factors 
in the relative sizes of the two clusters to begin with, it gives low weight to a large 
overlap derived from a pair of huge clusters. Likewise, a small but perfectly conserved 
cluster gets a high W-score, but a low overlap score. Because of the scale-free nature of 
biological networks, the WGCNA modules vary in size over two orders of magnitude 
with some clusters containing a few thousand genes while others only tens of genes [3]. 
The W-scores are automatically regularized against this cluster size variation. 
 
 
Triangle Percolation and Consensus Clusters 
Community detection in the information graph was performed by a variant of clique 
percolation [4]. A minimal clique, i.e. a fully connected subset of nodes, in a tripartite 
graph is a triangle. Clique percolation is a community detection technique that is based 
on the observation that cliques within a community will with high likelihood be 
“adjacent” to other cliques. For example, edge percolation (2-clique percolation) finds 
communities in a network by finding sets of edges that share many vertices. Likewise, 
triangle percolation (3-clique percolation) finds communities by looking for sets of 
triangles with many edges in common. Triangles have the additional interpretation of a 
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module that is approximately shared across all datasets. Thus, triangle percolation is a 
natural community detection algorithm.  
 
To perform triangle percolation, we enumerated all triangles in the information graph. 
This can be accomplished by greedy search. With the full set of triangles in the 
information graph, we formed the “triangle graph" which is simply a graph whose nodes 
represent triangles in the information graph and whose edges indicate that the 
corresponding triangles share an edge in the information graph. We weighted the edges of 
the triangle graph by the weight of the shared edge of the triangles. This allows high 
weight edges to strongly influence community formation. We found communities in the 
triangle graph by modularity maximization [5]. The communities of triangles correspond 
to sets of modules from each dataset that are approximately preserved across the three 
datasets. 
 
To derive a gene set associated to the triangle communities, we took all modules within 
that community, computed their unions within their dataset, and then computed their 
intersection across datasets. We call this final gene set a consensus cluster and its 
elements consensus genes. Note that, by the distributivity of intersection over union, this 
is equivalent to taking the three-way intersections between all modules in the community 
and then the union of those intersections. A more conservative alternative would be to 
take only the union of those intersections that derive from actual triangles in the 
community and not all possible triangles that can be made from the modules in the 
community. We opted against this because the presence of a gene in a module means that 
there exists a context in which that gene is coexpressed with the others in the module, 
thus the more liberal option cannot introduce genes that are wildly irrelevant. Moreover, 
the choice we have made here is extensible to any definition of community in the 
information graph, even if that (in general) k-partite graph has few or no k-cliques. This 
may be important in future studies using MICC involving many data sets. 
 
Hubs and consensus genes 

A module from WGCNA can be summarized by its module eigengene, which is the first 
principal component of the gene-normalized gene expression matrix for the genes in the 
module. The module eigengene is a theoretical construct that represents the hub gene of 
the module [6]. Genes that are highly correlated to the eigengene are thus more central to 
the module. The consensus genes from MICC are substantially more correlated to their 
eigengenes than randomly chosen genes (Figure S1). Thus the consensus clusters are 
enriched for hubs in their corresponding gene-gene coexpression networks. This is a 
useful proof-of-principle that MICC is identifying relevant structure in the data. 
	  
	   	  



Glossary of terms used in this paper 
The MICC analysis pipeline is motivated by the need to integrate several bioinformatics 
analyses across multiple datasets. Here we collect a set of terms that: 1) are used in a 
technical sense in MICC, 2) are standard in the bioinformatics/machine learning 
literature, and 3) are outside the scope of the main text. 
 
Network/Graph 
Networks are any collections of objects (called nodes) that have relationships with each 
other (called links). The nature of the nodes and links in a network determines the 
character of the network and what information it encodes. A standard, alternative term for 
a network is a graph. The terms network and graph are used interchangeably, but 
typically we use network when the nodes represent physically real things (like genes or 
proteins), whereas we use graph when the nodes are an abstraction of some sort. 
 
In the MICC method, there are 3 distinct types of networks that are used. They are given 
here in order of abstraction: 

1) Gene-gene coexpression networks derived from a single gene expression data 
cohort: nodes are genes, links are correlations between expression patterns 

2) The information graph: nodes are modules derived from the gene-gene 
coexpression networks, links are similarity scores between modules derived from 
different datasets. A link indicates that the two modules have a larger than 
expected overlap if the two gene-gene expression networks were completely 
dissimilar. Note that links only connect modules from different datasets. 

3) The triangle graph: nodes are triangles in the information graph, links are shared 
edges between triangles. A triangle in the information graph indicates that there 
are modules in each of the three datasets that are significantly similar to each 
other. In other words, a triangle in the information graph indicates that there is a 
core set of genes whose gene expression is preserved across all datasets. The 
triangle graph takes this one step further by considering the relationships between 
triangles. The triangle graph encodes not just perfect conservation of modules, but 
approximate conservation. 

 
There is one further network that is used in the main manuscript, the IMP Bayesian 
functional network. The nodes of the IMP network are genes and the links represent high 
probability functional interactions between those genes (e.g. the genes form a complex 
under some circumstance). The IMP network is a network learned from all publicly 
available gene expression data. It is not the same as a gene-gene coexpression network 
because its links represent probabilities, not correlations. 
 
Node 
Nodes are the basic unit of a network. They are the objects whose relationships are 
encoded in the network. For example, nodes could be genes and the network encodes 
some notion of relationship between genes. 
 
	    



Link/Edge 
Links are the unit of relationship between nodes in a network. A standard, alternative 
term for a link is an edge. Links denote that a pair of nodes is related. Links in our case 
are weighted meaning that they denote the strength of a relationship between nodes. For 
example, links in a gene-gene network could represent the correlation of those genes in a 
particular experiment. The weight in this case is the strength of the correlation. 
 
Cluster/Clustering 
A cluster is any grouping of objects by a notion of similarity between objects. There are 
two notions of cluster used in MICC: gene expression clusters and consensus clusters. 
The former are sets of genes that are similar in the sense that they are coexpressed within 
a single microarray dataset. The latter are sets of the gene expression modules that are 
similar in the sense that they a broadly conserved across datasets. 
 
Clustering is any algorithmic procedure that identifies groups of similar objects. 
 
Module 
A module is an alternative term for a cluster of genes that are grouped together by 
coexpression. Module is the standard term applied the output of Weighted Gene 
Coexpression Network Analysis (WGCNA). 
 
Consensus cluster 
A consensus cluster is set of genes whose coexpression is preserved across multiple 
datasets. MICC is a procedure for identifying these sets of genes. 
 
Partition 
A partition is a grouping of elements of a set into distinct groups. For example, WGCNA 
forms a partition of the genome by clustering genes into distinct, non-overlapping 
modules. The whole collection of modules from WGCNA comprises the partition. 
 
Information graph 
The information graph is network whose nodes are modules from distinct datasets and 
links represent a significantly large overlap between those modules. 
 
Communities 
A community is a subgroup of nodes in a network that are more densely interconnected 
to each other than they are to the rest of the network. Two “community detection” 
procedures are used in MICC: 1) WGCNA is a state-of-the-art algorithm for detecting 
communities specifically in gene coexpression networks; the communities in this case are 
called modules. 2) Clique percolation is a generic community detection procedure 
applicable for an arbitrary network. MICC uses clique percolation in the triangle graph to 
find sets of triangles (in the information graph) that share many edges. The communities 
in this case can be used to derive a consensus cluster gene set. 
 
	    



WGCNA 
Weighted gene coexpression network analysis (WGCNA) is a clustering procedure takes 
gene expression data from a single cohort and finds groups of genes that are highly 
correlated to each other and weakly correlated outside of their group. WGCNA is built 
upon the notion of a gene coexpression network (see above) and extracts a small set of 
signals that account for a large fraction of the gene expression variance. 
 
Principal components/Module eigengenes 
Principal component analysis (PCA) is a procedure for simplifying high-dimensional data 
and summarizing it with fewer dimensions (e.g. to plot in two dimensions). In this paper, 
we used PCA to extract the first principal components of gene expression modules. The 
output of WGCNA is a set of gene clusters (modules). The gene expression of any gene 
within a module is very similar to that of any other gene in the same module. Thus, we 
can capture the major signal in the gene expression of the whole module by simply 
considering the first principal component of the module’s full gene expression profile. 
This principal component is called the “module eigengene”. The term eigengene is 
related to the fact that PCA is performed using eigenvalues/eigenvectors from linear 
algebra.  
 
Hub 
A hub is a node in a network that is extremely densely connected to the rest of the 
network (or a part of the network). Biological networks have a well-studied property 
(called “scale-free”) where most nodes (genes, proteins, etc.) are weakly connected to the 
rest of the network, but a small fraction of the nodes are extremely highly connected. 
These highly connected nodes are called hubs. It has been shown that hubs in biological 
networks are key molecules involved in their various biological functions, without which 
the system is severely impaired. 
 
There are two types of hubs we consider in this paper. First, hubs in gene-gene 
coexpression networks are genes whose expression is highly correlated to the expression 
of many other genes. The module eigengenes from WGCNA represent theoretical genes 
that are the hubs of their respective module. The module eigengene, if it were a real gene, 
would be the most connected gene in the module. Genes that are very similar to an 
eigengene are therefore very highly correlated to the other genes within their module. 
 
The other type of hub we consider are those in the IMP Bayesian functional network. 
Again, in the IMP network nodes are genes, but the links are (predicted) interactions 
between the genes. In this case, then, a hub is a gene that has a very high number of 
interactions with other genes. 
	  
 

References 
 

1. Cover TM, Thomas JA (2012) Elements of information theory: Wiley-interscience. 
2. Meila M (2003) Comparing clusterings by the variation of information. Learning 

theory and kernel machines: Springer. pp. 173-187. 



3. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinformatics 9: 559. 

4. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community 
structure of complex networks in nature and society. Nature 435: 814-818. 

5. Newman MEJ (2006) Modularity and community structure in networks. Proceedings 
of the National Academy of Sciences 103: 8577-8582. 

6. Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network 
analysis. PLoS Comput Biol 4: e1000117. 

 


