Supplemental material

Table S1 Bacterial strains used in the study

Strain Description		Reference
	E. coli	
S17-1	<i>hsdR</i> 17 <i>recA</i> 1 RP4-2- <i>tet</i> ::Mu-1 <i>kan</i> ::Tn7 Sm ^R	(1)

P. aeruginosa		
PAO1	Wild-type <i>P. aeruginosa</i>	(2)

C. canimorsus			
C. canimorsus 5 (Cc5)	Isolated from human fatal septicemia after dog bite, 1995, Libramont, Belgium	(3)	
Cc5∆PUL1	Substitution of <i>PUL1</i> by <i>ermF</i> ; Em ^R	(4)	
$Cc5\Delta PUL2$	Substitution of <i>PUL2</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL3	Substitution of <i>PUL3</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL4	Substitution of <i>PUL4</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL5	Substitution of <i>PUL5</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL6	Substitution of <i>PUL6</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL7	Substitution of <i>PUL7</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL8	Substitution of <i>PUL8</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL9	Substitution of <i>PUL9</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL10	Substitution of <i>PUL10</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL11	Substitution of <i>PUL11</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL12	Substitution of <i>PUL12</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆PUL13	Substitution of <i>PUL13</i> by <i>ermF</i> ; Em ^R	(4)	
Cc5∆Ccan_03610	Substitution of <i>Ccan_03610</i> by <i>ermF</i> using pFL1; Em ^R	This study	
Cc5∆Ccan_03620	Substitution of <i>Ccan_03620</i> by <i>ermF</i> using pFL2; Em ^R	This study	
Cc5∆Ccan_03630	Substitution of <i>Ccan_03630</i> by <i>ermF</i> using pFL3; Em ^R	This study	
Cc5∆Ccan_03640	Substitution of <i>Ccan_03640</i> by <i>ermF</i> using pFL4; Em ^R	This study	

<i>Cc5∆Ccan_03650</i>	Substitution of <i>Ccan_03650</i> by <i>ermF</i> using pFL5; Em ^R	This study
<i>Cc5∆Ccan_03660</i>	Substitution of <i>Ccan_03660</i> by <i>ermF</i> using pFL6; Em ^R	This study
<i>Cc5∆Ccan_03670</i>	Substitution of <i>Ccan_03670</i> by <i>ermF</i> using pFL7; Em ^R	This study
<i>Cc5∆Ccan_03680</i>	Substitution of <i>Ccan_03680</i> by <i>ermF</i> using pFL8; Em ^R	This study
<i>Cc5∆Ccan_</i> 03690	Substitution of <i>Ccan_03690</i> by <i>ermF</i> using pFL9; Em ^R	This study
<i>Cc5∆Ccan_03700</i>	Substitution of <i>Ccan_03700</i> by <i>ermF</i> using pFL10; Em ^R	This study
<i>Cc5∆Ccan_</i> 03710	Substitution of <i>Ccan_03710</i> by <i>ermF</i> using pFL11; Em ^R	This study
<i>Cc5∆Ccan_</i> 03720	Substitution of <i>Ccan_03720</i> by <i>ermF</i> using pFL12; Em ^R	This study
<i>Cc5∆Ccan_</i> 03730	Substitution of <i>Ccan_03730</i> by <i>ermF</i> using pFL13; Em ^R	This study
<i>Cc5∆Ccan_15860</i>	Substitution of <i>Ccan_15860</i> (<i>furA</i>) by <i>ermF</i> using pFL61; Em ^R	This study

Table S2 Primers used in the study

Lab.Ref.	Name	Sequence 5'-3' (restriction sites are underlined)	Restriction
		Deletione	
0050		Deletions	
6953		cgctgcaggctacctatatgatggagcc	Pstl
6954	rev_03640_1.2	aaaaatttcatccttcgtagaaaaacttcttacgatttttattta	
7027	fwd_03640_2.1	gagtagataaaagcactgtttagggacaggacgtg	
7028	rev_03640_2.2	ggactagtatccgtctgtgccaataccc	Spel
6957	fwd_03640_3.1	ctaaataaaaatcgtaagaagtttttctacgaaggatgaaatttttcagggacaac	
6958	rev_03640_3.2	ggacaggacacgtcctgtccctaaacagtgcttttatctactccgatagcttc	
6959	fwd_03650_1.1	cg <u>ctgcag</u> tttacgagcaggacatcc	Pstl
6960	rev_03650_1.2	aaaaatttcatccttcgtagaaatgataatctttg	
7050	fwd_03650_2.1	gagtagataaaagcactgttcacttggttacaacgttcc	
7051	rev_03650_2.2	ggactagtatccgagtgttttctacc	Spel
6963	fwd_03650_3.1	caaagattatcatttctacgaaggatgaaatttttcagggacaac	
7052	rev_03650_3.2	ggaacgttgtaaccaagtgaacagtgcttttatctactccgatagcttc	
6965	fwd_03660_1.1	cgctgcagccaaaacagtttacattgacgg	Pstl
6966	rev_03660_1.2	aaaaatttcatccttcgtagtctctactatttcctattttttac	
6967	fwd_03660_2.1	gagtagataaaagcactgttaataacaatatataaaaatagaatag	
6968	rev_03660_2.2	ggactagtacccaaatagcggaaagg	Spel
6969	fwd_03660_3.1	gtaaaaataggaaatagtagagactacgaaggatgaaatttttcagggacaac	
6970	rev_03660_3.2	ctattctatttttatatattgttattaacagtgcttttatctactccgatagcttc	
6971	fwd_03670_1.1	cgctgcagaaatcagtgggaagtaaccgc	Pstl
6972	rev_03670_1.2	aaaaatttcatccttcgtagttttatgttctttcttgtag	
6973	fwd_03670_2.1	gagtagataaaagcactgtttttttagtatttgcccaacg	
6974	rev_03670_2.2	ggactagtttttccgttccgtaaggttctgccc	Spel

6975	fwd_03670_3.1	ctacaagaaagaacataaaactacgaaggatgaaatttttcagggacaac	
6976	rev_03670_3.2	cgttgggcaaatactaaaaaaaacagtgcttttatctactccgatagcttc	
6977	fwd_03680_1.1	cg <u>ctgcag</u> attgggggggggggggctcgtgc	Pstl
6978	rev_03680_1.2	aaaaatttcatccttcgtagatcatctgatatttttattatttgatttgatgc	
6979	fwd_03680_2.1	gagtagataaaagcactgtttttgtaaggaagggacgtgtcc	
6980	rev_03680_2.2	ggactagtccttctcatcgaaattattgacatcg	Spel
6981	fwd_03680_3.1	gcatcaaatcaaataataaaaatatcagatgatctacgaaggatgaaatttttcagggacaac	
6982	rev_03680_3.2	ggacacgtcccttccttacaaaaacagtgcttttatctactccgatagcttc	
7527	fwd_03690_1.1	gg <u>ctgcagg</u> atttgtacgtaaccaatgtgcttttcacc	Pstl
7528	rev_03690_1.2	gttgcaaataccgatgagcgattatttttattttaagcggaaaggacacg	
7529	fwd_03690_2.1	cctgaaaaatttcatccttcgtagaatatgaaaaaatatcttattctgttggc	
7530	rev_03690_2.2	cc <u>actagtg</u> tattcacgagcgggttcaatagaattagtgg	Spel
7531	fwd_03690_3.1	cgtgtcctttccgcttaaaataaaaaataatcgctcatcggtatttgcaac	
7532	rev_03690_3.2	gccaacagaataagatattttttcatattctacgaaggatgaaatttttcagg	
7533	fwd_03700_1.1	gg <u>ctgcag</u> cgcaagacttctgattgtacaagagaccg	Pstl
7534	rev_03700_1.2	gttgcaaataccgatgagcattttattgatttacgtatgatttaagtcgc	
7535	fwd_03700_2.1	cctgaaaaatttcatccttcgtagaaacaagctaaaaaataatatgac	
7536	rev_03700_2.2	ccactagtccatcttttgaaacggctgagatacttgc	Spel
7537	fwd_03700_3.1	gcgacttaaatcatacgtaaatcaataaaatgctcatcggtatttgcaac	
7538	rev_03700_3.2	gtcatattattttttagcttgtttctacgaaggatgaaatttttcagg	
6995	fwd_03710_1.1	cg <u>ctgcag</u> cagaaaataatgttcagaaagc	Pstl
6996	rev_03710_1.2	aaaaatttcatccttcgtagattattttttagcttgtttctatttgtc	
6997	fwd_03710_2.1	gagtagataaaagcactgttacgtgttggaatgacagcgg	
6998	rev_03710_2.2	ggactagtttcctgcaatcgcacttgatac	Spel
6999	fwd_03710_3.1	gacaaatagaaacaagctaaaaaataatctacgaaggatgaaatttttcagggacaac	

7000	rev_03710_3.2	ccgctgtcattccaacacgtaacagtgcttttatctactccgatagcttc	
7001	fwd_03720_1.1	cgctgcagtccattgataatcagcgagag	Pstl
7002	rev_03720_1.2	aaaaatttcatccttcgtagattttttctgtttgtaagaacaagaatcgcc	
7003	fwd_03720_2.1	gagtagataaaagcactgttagtaaaaaggattttcttttc	
7004	rev_03720_2.2	gg <u>actagt</u> ctcctttgaagaggaagcc	Spel
7005	fwd_03720_3.1	ggcgattcttgttcttacaaacagaaaaaatctacgaaggatgaaatttttcagggacaac	
7006	rev_03720_3.2	gaaaagaaaatcctttttactaacagtgcttttatctactccgatagcttc	
7059	fwd_03610_1.1	cg <u>ctgcag</u> aatactctatttacacgg	Pstl
7060	rev_03610_1.2	aaaaatttcatccttcgtagttttataaattttggtg	
7061	fwd_03610_2.1	gagtagataaaagcactgttttttttgaaactgtcatttgg	
7062	rev_03610_2.2	<u>ggactagt</u> aagttgcccaatttctgc	Spel
7063	fwd_03610_3.1	caccaaaatttataaaactacgaaggatgaaatttttcagggacaac	
7064	rev_03610_3.2	ccaaatgacagtttcaaaaaaaacagtgcttttatctactccgatagcttc	
7065	fwd_03620_1.1	cg <u>ctgcag</u> attagtatgttggcattgg	Pstl
7066	rev_03620_1.2	aaaaatttcatccttcgtagaatattttctttaaagtatgatc	
7067	fwd_03620_2.1	gagtagataaaagcactgttaatttgttttttatcttacaatc	
7068	rev_03620_2.2	<u>ggactagt</u> ttgagacagagtaaaagc	Spel
7069	fwd_03620_3.1	gatcatactttaaagaaaatattctacgaaggatgaaatttttcagggacaac	
7070	rev_03620_3.2	gattgtaagataaaaaaaaattaacagtgcttttatctactccgatagcttc	
7085	fwd_03730_1.1	cg <u>ctgcag</u> atagggtttatccctgctggggaagg	Pstl
7086	rev_03730_1.2	aaaaatttcatccttcgtagctctttttctatttatatctg	
7087	fwd_03730_2.1	gagtagataaaagcactgttaatctgtataaaaatgc	
7088	rev_03730_2.2	gg <u>actagt</u> catcgcgaggatgaagcaaaatataatcc	Spel
7089	fwd_03730_3.1	cagatataaatagaaaaagagctacgaaggatgaaatttttcagggacaac	
7090	rev_03730_3.2	gcatttttatacagattaacagtgcttttatctactccgatagcttc	

7096	fwd_03630_1.1	cgctgcagacgctgataccagattgattgattttcaaacagg	Pstl
7097	rev_03630_1.2	aaaaatttcatccttcgtagatttcaatacttatcatttgtttttaatgc	
7098	fwd_03630_2.1	gagtagataaaagcactgttgcatcaatcagctacaaccaaaaatcc	
7099	rev_03630_2.2	ggactagttacttccgagtatttggttggc	Spel
7100	fwd_03630_3.1	gcattaaaaacaaatgataagtattgaaatctacgaaggatgaaatttttcagggacaac	
7101	rev_03630_3.2	ggatttttggttgtagctgattgatgcaacagtgcttttatctactccgatagcttc	
7102	FR227-1.1furAKOPstl	cgctgcagggaaatttggataaatacaataatg	Pstl
7103	FR228-1.2-furAKO	gagtagataaaagcactgttctgcttggtgttttcttttttag	
7104	FR229-2.1-furAKO	gaaaaatttcatccttcgtagccaagatggcagtagatttattac	
7105	FR230-2.2-furAKOSpel	ggactagtattggcaaggttacgataacg	Spel
7106	FR231-3.1-furAKO	ctaaaaagaaaacaccaagcagaacagtgcttttatctactc	
7107	FR232-3.2-furAKO	gtaataaatctactgccatcttggctacgaaggatgaaatttttc	

	Trans-complementations and PCR screening			
7036	fwd_Ccan_03640	cgta <u>ccatgg</u> cgtgttaccaaaagatagg	Ncol	
7037	rev_Ccan_03640	tg <u>actagt</u> taaaacttcacattcactcc	Spel	
7038	fwd_Ccan_03650	cgta <u>ccatgg</u> cgaatcaatcaatgataaagaaactactatatagcg	Ncol	
7039	rev_Ccan_03650	tg <u>actagt</u> taaaacccaacatttacc	Spel	
7040	fwd_Ccan_03680	cgta <u>ccatgg</u> cgcccaacgaaagagcatcaaatc	Ncol	
7041	rev_Ccan_03680	tg <u>actagt</u> tatcttggattgggtgctaaacc	Spel	
7042	fwd_Ccan_03690	cgta <u>ccatgg</u> cgagaagaatatacataatattaacattgg	Ncol	
7043	rev_Ccan_03690	tg <u>actagt</u> tattgatttacgtatgatttaagtcgc	Spel	
7044	fwd_Ccan_03700	cgta <u>ccatgg</u> cgaaaaaatatcttattctgttggc	Ncol	
7045	rev_Ccan_03700	tg <u>actagt</u> tatttgtcaactatttcagc	Spel	
7046	fwd_Ccan_03710	cgta <u>ccatgg</u> cgacaatgaatagaaaatatttatttttgataatattactgggg	Ncol	

7047	rev_Ccan_03710	tg <u>actagt</u> tatggcaaaataatatactcgc	Spel
7048	fwd_Ccan_03720	cgtaccatggcgtggaaatatacagttttaatagtgtccc	Ncol
7049	rev_Ccan_03720	tgactagttatctttttatatcattgattgaaattccg	Spel
7077	fwd_Ccan_03660	cgta <u>ccatgg</u> atagtcatatttggatagaaaagtgg	Ncol
7078	rev_Ccan_03660	tg <u>actagt</u> tattgcttccgtgctacaaatcgg	Spel
7079	fwd_Ccan_03670	cgta <u>ccatgg</u> cgaagtcaaaaaaatag	Ncol
7080	rev_Ccan_03670	tg <u>actagt</u> tatctttcttcaaaataagc	Spel
3451	fwd_16S	agagtttgatcctggctcag	
3454	rev_16S	gggttgcgctcgttg	

	Sequencing			
3818	pMM25_fwd	gttttcccagtcacgac		
4730	pMM25_rev	ggcacgttccagttctttcag		
7125	ermF_seq1	atgctcaaattgtttgtttgtctcc		
7126	ermF_seq2	gagcaaacatataaccgaggaacaaagtgc		

	qPCR			
7335	03640-F-qPCR	caatgcggctcgaatgactg		
7336	03640-R-qPCR	gggaatgggcgtagaaacca		
7337	03650-F-qPCR	tcggtgaggtggttgttacg		
7338	03650-R-qPCR	tacgcgtccttcgagcatac		
7339	03680-F-qPCR	caggcaaacaaagcgttgga		
7340	03680-R-qPCR	gttccgtaaggttctgccca		
7341	08720-F-qPCR	ggacagtgtttacttgttatcaagtc		
7342	08720-R-qPCR	gctataatgtgacgagctaaatcac		
7343	16S -F-qPCR	tgagtggctaagcgaaagtga		

7344 16S -R-qPCR cttggtaaggttcctcgcgt	
---	--

pPM5 construction			
5470	PM177_Fj_Pompa_fw	cgatgtcgacttttttttaacatttgattttgtatttaaaaaatttggtgttacttttgc	Sall
5471	PM178_Fj_Pompa_rv	cgat <u>ccatgg</u> ttaattttttaattacaatttagttaattacaagcaaaagtaacacc	Ncol

Table S3 Plasmids used in the study

Plasmid Description Referen

Vectors		
pMM13	<i>ori</i> ColE1, Em ^R .	(5)
pMM25	<i>ori</i> ColE1, Km ^R , Cfx ^R .	(5)
pMM47.A	<i>ori</i> ColE1, <i>ori</i> pCC7, Ap ^R , Cfx ^R .	(5)
pPM5	<i>ori</i> ColE1, <i>ori</i> pCC7, Ap ^R , Cfx ^R ; promoter of <i>ompA</i> (<i>Fjoh_0697</i>) from <i>Flavobacterium johnsoniae</i> was amplified by PCR using primers 5470 and 5471, digested with <i>Sal</i> I and <i>Nco</i> I, and inserted into the corresponding sites of pMM47.A, replacing the original <i>ermF</i> promoter.	This study

Mutator Plasmids		
pFL1	<i>ermF</i> framed by the 5' and 3' regions of <i>Ccan_03610</i> cloned into pMM25	This study
pFL2	<i>ermF</i> framed by the 5' and 3' regions of <i>Ccan_03620</i> cloned into pMM25	This study
pFL3	<i>ermF</i> framed by the 5' and 3' regions of <i>Ccan_03630</i> cloned into pMM25	This study
pFL4	ermF framed by the 5' and 3' regions of Ccan_03640 cloned into pMM25	This study
pFL5	<i>ermF</i> framed by the 5' and 3' regions of <i>Ccan_03650</i> cloned into pMM25	This study
pFL6	ermF framed by the 5' and 3' regions of Ccan_03660 cloned into pMM25	This study
pFL7	ermF framed by the 5' and 3' regions of Ccan_03670 cloned into pMM25	This study

pFL8	ermF framed by the 5' and 3' regions of Ccan_03680 cloned into pMM25	This study
pFL9	ermF framed by the 5' and 3' regions of Ccan_03690 cloned into pMM25	This study
pFL10	ermF framed by the 5' and 3' regions of Ccan_03700 cloned into pMM25	This study
pFL11	ermF framed by the 5' and 3' regions of Ccan_03710 cloned into pMM25	This study
pFL12	ermF framed by the 5' and 3' regions of Ccan_03720 cloned into pMM25	This study
pFL13	ermF framed by the 5' and 3' regions of Ccan_03730 cloned into pMM25	This study
pFL61	ermF framed by the 5' and 3' regions of Ccan_15860 cloned into pMM25	This study

Trans-complementation Plasmids		
pFL14	Ccan_03640 amplified with 7036 & 7037 and cloned into pPM5	This study
pFL15	Ccan_03650 amplified with 7038 & 7039 and cloned into pPM5	This study
pFL16	Ccan_03660 amplified with 7077 & 7078 and cloned into pPM5	This study
pFL17	Ccan_03670 amplified with 7079 & 7080 and cloned into pPM5	This study
pFL18	Ccan_03680 amplified with 7040 & 7041 and cloned into pPM5	This study
pFL19	Ccan_03690 amplified with 7042 & 7043 and cloned into pPM5	This study
pFL20	Ccan_03700 amplified with 7044 & 7045 and cloned into pPM5	This study
pFL21	Ccan_03710 amplified with 7046 & 7047 and cloned into pPM5	This study
pFL22	Ccan_03720 amplified with 7048 & 7049 and cloned into pPM5	This study

Table S4 Protein and iron concentration of products used in the study

	[Iron] (µM)	[Protein] (g/l)
Serotransferrin	41.2 ± 3.0	5.4 ± 0.2
Apotransferrin	0.5 ± 0.2	4.4 ± 0.1
Lactoferrin	37.4 ± 7.2	3.5 ± 0.1
Bovine transferrin	38.1 ± 3.5	4.3 ± 0.2
Hemoglobin	257.4 ± 16.3	5.9 ± 0.6
Human serum, heat inactivated (Millipore)	18.1 ± 1.0	49.0 ± 1.1
Human serum, heat inactivated (University Hospital of Basel)	19.5 ± 1.7	57.2 ± 5.2
Protein depleted human serum, heat inactivated	0.9 ± 0.6	N/A

Figure S1.

Growth in HIHS of C. canimorsus 5 mutants deleted from individual PULs

Number of generations achieved by each of the individual *PUL* deletion mutant after 23 hours in HIHS. The black bar and to a lesser extent the dark grey bars indicate significantly reduced growth scores with respect to wt. Error bars indicate standard deviations (average of 3 experiments). (*) and (***) apply to comparisons to wt values and stand for *t*-test based error probabilities of <0.05 and <0.001 respectively.

Figure S2.

Regulation of transcription of PUL3 by free iron and the FurA transcriptional regulator

Fold change of mRNA levels of the two *susC* homologues *Ccan_03640* and *Ccan_03650* and the *susD* homologue *Ccan_03680*. (A) Relative mRNA levels from wt bacteria grown in HIHS plus iron (III) citrate (+Fe) *vs.* HIHS with no iron supplementation (-Fe). (B) Relative mRNA levels of $\Delta furA vs.$ wt *Cc5* grown in HIHS. Error bars represent the standard deviation (average of 3 experiments). (*) and (**) apply to comparisons to wt values and stand for *t*-test based error probabilities of <0.05 and <0.01 respectively.

С

Figure S3.

Iron capture from transferrin does not involve soluble factors

(A) Number of generations achieved by wt (white bars) and $\Delta PUL3$ (black bars) *C. canimorsus* bacteria after 23 hours of co-culture in HIHS alone or supplemented with 0.25 mM iron (III) citrate (FeC₆H₅O₇). (B) Number of generations achieved by the wt (white bars) and each of the individual *ics* deletion mutants (black bars) after 23 hours of co-culture in HIHS. (C) Total growth in HIHS of *P. aeruginosa* PAO1 wt (dark grey bar) and *Cc*5 wt (white bar). (D) Siderophore detection in *Cc*5 wt (white bar) and *P. aeruginosa* PAO1 wt (light and dark grey bars) HIHS culture supernatants using the chrome azurol S assay. Decrease of the ratio A/A_{ref} at 630 nm indicates presence of siderophore. Dots: dilution series of the iron chelator desferrioxamine mesylate (DFOM) used as standard curve. PAO1 1/10: PAO1 supernatant diluted 1 to 10 in ddH₂O. Error bars in all panels represent standard deviation (average of 3 experiments). (**) and (***) apply to comparisons to *Cc5* wt values and stand for *t*-test based error probabilities of <0.01 and <0.001 respectively.

Figure S4.

Cleavage of human serotransferrin *N*-glycans by the Gpd complex

(A) Coomassie staining of SDS-PAGE loaded with STF incubated in absence (NT, lane 1 & 4) or presence of wt (lane 2 & 5), *PUL3* deleted (lane 3) or *PUL5* deleted (lane 6) *C. canimorsus*. (B) *Sambucus Nigra* Lectin (SNA) staining of human STF incubated in absence (NT, lane 1) or presence of wt (lane 2), *PUL3* deleted (lane 3) or *PUL5* deleted (lane 4) *C. canimorsus*. Numbers on the left indicate protein mass of the references in kDa. Grey and black arrows indicate a shift in electrophoretic mobility of STF.

Fig.S5

Figure S5.

The ICS is mostly found among pathogenic members from the Bacteroidetes phylum and has broad species specificity

(A) Orthologous *PULs* of *Cc5 PUL3* identified in the Complete Genomes database. The *PULs* display has been limited to the genes implicated in iron scavenging with a putative TonB-dependent outer membrane protein ortholog to either *icsA* or *icsC*. For the sake of readability, only the largest SusC like homologs and the last represented genes are tagged here. In the case of *R. anatipestifer* DSM 15868, an additional FecA-like protein that shares higher similarity with other orthologs than with its paralog is found at approximately 1 Mb from the SusC like protein. (B) Non-exhaustive occurrences of *PUL3* genes among other bacteria spotted on a representative 16S rRNA phylogenetic tree. The evolutionary history has been inferred using the Maximum Parsimony method and the consensual 16S rRNA sequences from the different taxa where genes from *PUL3* were found. Spots indicate major combinations of *PUL3* encoded genes found within each taxon. Letters in the round spots refer to the proteins encoded by *PUL3*, namely IcsA (A), IcsC (C), IcsD (D), IcsE (E), IcsF (F), IcsG (G) and IcsH (H). Underlined taxon names indicate the occurrence of strains exhibiting all seven *ics* genes in their genome.

References

- 1. **Simon R PU, & Puhler A.** 1983. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotech. **1:**784-791.
- Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV. 2000. Complete genome sequence of *Pseudomonas aeruginosa PAO1*, an opportunistic pathogen. Nature 406:959-964.
- 3. Shin H, Mally M, Kuhn M, Paroz C, Cornelis GR. 2007. Escape from immune surveillance by *Capnocytophaga canimorsus*. J Infect Dis **195**:375-386.
- 4. **Manfredi P, Renzi F, Mally M, Sauteur L, Schmaler M, Moes S, Jeno P, Cornelis GR.** 2011. The genome and surface proteome of *Capnocytophaga canimorsus* reveal a key role of glycan foraging systems in host glycoproteins deglycosylation. Mol Microbiol **81:**1050-1060.
- 5. Mally M, Cornelis GR. 2008. Genetic tools for studying *Capnocytophaga canimorsus*. Appl Environ Microbiol **74:**6369-6377.