Supplementary Material

Endothelial Nlrp3 Inflammasome Activation Associated with Lysosomal Destabilization during Coronary Arteritis

Yang Chen¹, Xiang Li¹, Krishna M. Boini¹, Ashley L. Pitzer¹, Erich Gulbins², Yang Zhang¹, Pin-Lan Li¹

¹Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298

²Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany

Running title: Inflammasomes and Lysosome Dysfunction in Coronary Arteritis

Correspondence should be addressed to:

Yang Zhang, Ph.D, Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298; Tel: (804) 828-0738; Fax: (804) 828-4794; E-mail: yzhang3@vcu.edu

Or

Pin-Lan Li, M.D, Ph.D, Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298; Tel: (804) 828-4793; Fax: (804) 828-4794; E-mail: pli@vcu.edu

Supplementary Figure S1

Figure S1. Effects of cathepsin B inhibition on LCWE-induced early activation of inflammasomes in coronary arteries of mice. Mice were intraperitoneally treated with LCWE (500 μ g for 1, 3 and 7 days) with or without cathepsin B inhibitor Ca-074Me (5mg/kg). (A) Frozen sections of mouse hearts were stained with FLICA, a green fluorescent probe specific for active caspase-1, and Alexa555-conjugated antibodies against an endothelium marker vWF. The merged images displayed yellow dots or patches indicating the colocalization of FLICA (green) with vWF (red). Scale bar = 50 μ m. (B) Summarized data showing area percentage of the endothelium positive for VCAM-1 staining in coronary arteries. N = 5 mice per group. *P < 0.05 *vs*. Ctrl; [#]P< 0.05 Ca-074Me *vs*. vehl.

Supplementary Figure S2

Figure S2. Effects of cathepsin B inhibition on LCWE-induced VCAM-1 expression in coronary arterial endothelium of mice. Mice were intraperitoneally treated with LCWE (500 μ g for 1, 3, 7 and 14 days) with or without cathepsin B inhibitor Ca-074Me (5mg/kg). (A) IHC staining showing the expression of VCAM-1 in the endothelium of coronary arteries. Enlarged images of area of interest (AOI) are indicated with a square. Scale bar: 50 μ m. (B) Summarized data showing area percentage of the endothelium positive for VCAM-1 staining in coronary arteries. N = 5 mice per group. *P < 0.05 *vs*. Ctrl; [#]P< 0.05 Ca-074Me *vs*. vehl.

Supplementary Figure S3

Figure S3. Leukocyte adhesion in coronary arteries of mice with LCWE for 1-7 days. Mice were intraperitoneally treated with LCWE (500 μ g for 1, 3 and 7 days) with or without cathepsin B inhibitor Ca-074Me (5mg/kg). (A) IHC staining showing the expression of neutrophil marker in the endothelium of coronary arteries. Enlarged images of area of interest (AOI) are indicated with a square. (B) Summarized data showing area percentage of the endothelium positive for neutrophil marker in coronary arteries. (C) IHC staining showing the expression of macrophage marker F4/80 in the endothelium of coronary arteries. Enlarged images of area of interest (AOI) are indicated with a square. (D) Summarized data showing area percentage of the endothelium positive for F4/80 in coronary arteries. Scale bar: 50 μ m. N = 5 mice per group.