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Defects of CRB2 Cause
Steroid-Resistant Nephrotic Syndrome

Lwaki Ebarasi,1,2,12 Shazia Ashraf,3,12 Agnieszka Bierzynska,4 Heon Yung Gee,3 Hugh J. McCarthy,4

Svjetlana Lovric,3 Carolin E. Sadowski,3 Werner Pabst,3 Virginia Vega-Warner,5 Humphrey Fang,3

Ania Koziell,6 Michael A. Simpson,7 Ismail Dursun,8 Erkin Serdaroglu,9 Shawn Levy,10 Moin A. Saleem,4

Friedhelm Hildebrandt,3,11,* and Arindam Majumdar1,*

Nephrotic syndrome (NS), the association of gross proteinuria, hypoalbuminaemia, edema, and hyperlipidemia, can be clinically

divided into steroid-sensitive (SSNS) and steroid-resistant (SRNS) forms. SRNS regularly progresses to end-stage renal failure. By homo-

zygosity mapping and whole exome sequencing, we here identify recessive mutations in Crumbs homolog 2 (CRB2) in four different

families affected by SRNS. Previously, we established a requirement for zebrafish crb2b, a conserved regulator of epithelial polarity, in

podocyte morphogenesis. By characterization of a loss-of-function mutation in zebrafish crb2b, we now show that zebrafish crb2b is

required for podocyte foot process arborization, slit diaphragm formation, and proper nephrin trafficking. Furthermore, by complemen-

tation experiments in zebrafish, we demonstrate that CRB2 mutations result in loss of function and therefore constitute causative

mutations leading to NS in humans. These results implicate defects in podocyte apico-basal polarity in the pathogenesis of NS.
Podocytes are highly specialized and polarized epithelial

cells that are critical for renal glomerular filtration via their

interdigitated foot processes connected by the slit dia-

phragm.1 Accordingly, disruption of foot process organiza-

tion inevitably results in nephrotic syndrome (NS).2

Steroid-resistant NS (SRNS) leads to end-stage renal dis-

ease.3–5 We have recently shown in a cohort of families

affected by SRNS that 33% of all cases are caused by muta-

tion in 1 of 21 different genes described in Mendelian

forms of SRNS.6 However, a large percentage of cases

remain molecularly unsolved. To identify additional genes

mutated in SRNS in humans, we obtained blood samples

and pedigrees after acquiring informed consent from indi-

viduals with SRNS and their family members. Approval for

human subject research was obtained from the institu-

tional review boards at the University of Michigan and

the Boston Children’s Hospital. We performed homo-

zygosity mapping (HM)7 followed by whole exome

sequencing (WES) in these families affected by SRNS. In a

family (A1968) of Turkish origin, two siblings had SRNS

with renal histology of focal segmental glomerulosclerosis

(FSGS) (Table 1). HM in both affected siblings yielded five

regions of homozygosity by descent with a cumulative

genomic length of ~106 Mb. None of the homozygous

peaks coincided with any of seven common recessive

causes of SRNS (Figure 1A), suggesting that genes known

to be mutated in SRNS were not likely to be involved.

By WES in one of the affected siblings from family
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A1968, we detected a homozygous missense mutation:

c.1859G>C (p.Cys620Ser) in exon 7 of CRB2 (crumbs fam-

ily member 2; RefSeq accession number NM_173689 [MIM

609720]) on chromosome 9 (Figures 1B–1F). This variant

was the only homozygous variant remaining from the

variant filtering process (Table S1 available online). The

mutation alters an evolutionarily conserved cysteine resi-

due within the tenth EGF-like repeat (Figures 1C–1F).

It segregated with the affected status in this family and

was absent from >190 ethnically matched healthy control

individuals and from >6,500 European controls in the

Exome Variant Server (Table 1).

By WES in another family (S1232) with an individual

affected with SRNS, we identified compound heterozy-

gous mutations: c.1882C>T (p.Arg628Cys) and c.3089_

3104dup (p.Gly1036Alafs*43) in CRB2 (Figure 1F, Table 1).

The heterozygous mutation c.1882C>T (p.Arg628Cys)

altered an amino acid residue that was conserved from

C. intestinalis tohumans andwas inherited fromthemother

(Figure 1G, Table 1). The other heterozygous mutation in

this individual was a deleterious duplication of 16 bases

c.3089_3104dup (p.Gly1036Alafs*43) in exon 10 of CRB2

(Figure 1F). This variant occurred de novo in the affected

individual (Table 1). The duplication was confirmed by

PCRamplification, cloning, and sequencingof the genomic

DNA from the affected individual (Figure S1).

To discover additional mutations in CRB2, we then per-

formed array-based multiplex barcoded PCR amplification
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and next-generation sequencing8 in an additional 1,010

families with SRNS. In an individual from Turkey with

SRNS (A3893-21), we detected a homozygous missense

mutation (c.1886G>C [p.Cys629Ser]) in exon 7 of CRB2

(Figure 1F, Table 1). In another individual from an unre-

lated family (A2222-21), we identified a third homozygous

missense mutation: c.3746G>A (p.Arg1249Gln) in CRB2

(Figure 1F, Table 1). The missense mutation c.1886G>C

(p.Cys629Ser) also alters a conserved cysteine within the

tenth EGF-like repeat, whereas c.3746G>A (p.Arg1249Gln)

changes a conserved arginine in the cytoplasmic tail of

CRB2 (Figure 1F). Renal biopsy revealed FSGS in four of

the five individuals (Table 1).

CRB2 spans 22.49 kb on chromosome9q33.4 (Figure 1C).

The longest transcript of CRB2 (RefSeq NM_173689 [MIM

609720]) has 13 coding exons (Figure 1D). As a result of

alternative splicing, CRB2 encodes two isoforms: isoform

1, a putative type I transmembrane protein of 1,285 amino

acids (Figure 1E), and isoform 2, a secreted protein of 1,176

amino acids.9 CRB2 is known to contain 15 extracel-

lular EGF-like domains and 3 extracellular laminin G-like

domains (Figure 1E). Interestingly, three of the identi-

fied missense mutations (p.Cys620Ser, p.Arg628Cys, and

p.Cys629Ser) occur within exon 7 of CRB2, which encodes

the extracellular tenthEGF-like domainof this protein. This

suggests that the tenth EGF-like domain might play an

important role in CRB2 function in podocytes. Interest-

ingly, many other disease-associated missense mutations

affect amino acids in the well-conserved EGF-like repeats

and laminin A domains of the paralog CRB1, implying an

important function for the extracellular region of CRB1 in

human retinal dystrophies.10,11

We performed immunofluoresence staining in rat kid-

neys and demonstrated that CRB2 is expressed in podo-

cytes in adult rat glomeruli (Figure 2). CRB2-positive

staining was seen in cells positive for the podocyte markers

WT1, GLEPP1, SYNAPTOPODIN, and PODOCALYXIN

(Figure 2). CRB2 colocalizes most tightly with GLEPP1

among podocytic markers used in the immunofluores-

cence, consistent with the localization of CRB2 at the slit

diaphragms of podocytes (Figure 2C).

In an earlier study, we reported that morpholino-

induced knockdown of zebrafish crb2b resulted in podo-

cyte foot process defects with ensuing proteinuria.12 To

genetically define crb2b function in podocyte differentia-

tion, we now obtained a stable heritable loss-of-function

mutation in crb2b. The crb2b mutant allele was caused

by a retroviral murine leukemia virus (MLV) insertion

in the crb2b locus and is transmitted to offspring as a

recessive mutation in Mendelian ratios (see Supplemental

Methods).13,14 crb2b�/� homozygous embryos are indistin-

guishable from crb2bþ/� sibs up to 4 days postfertilization

(dpf), after which they show pronephric cysts and pericar-

dial edema, both indicators of kidney dysfunction (Figures

3A and 3B). By 5 dpf, crb2b�/� embryos have smaller eyes,

consistant with requirement in photoreceptor differentia-

tion.15,16 The pronephric and eye phenotypes are due to
, 2015



specific loss of crb2b gene function, as shown by the fact

that both can be rescued by injection of full-length zebra-

fish Crb2b mRNA (Figure 3C).

Histological sectioning showed glomerular morpho-

genesis defects in crb2b�/� homozygotes (Figure 3D). We

next performed electron microscopic analysis of crb2b�/�

mutant pronephric glomeruli to assess podocyte structure.

Ultrastructurally, the crb2b�/� homozygotes show disrup-

tion of the regular array of patterned podocyte foot

processes, which represents the disapearance of slit dia-

phragms (Figures 3E–3G). Interestingly, crb2b�/� foot pro-

cesses contain vesicular-like structures not observed

in control crb2bþ/� sibs. In addition, the apical membranes

of crb2b�/� podocytes show membrane projections that

reach into Bowman’s space (Figures 3E, 3F, and S2). In

crb2b�/� glomeruli, the glomerular basement membrane

(GBM) is present but capillary endothelia lack membrane

fenestrations (Figure 3F). In control phenotypically wild-

type 5 dpf crb2bwt embryos, we counted 2.67 5 0.71

fenestrations/mm (n ¼ 5 capillary loops from 3 glomeruli).

However, in 5 dpf crb2b�/� embryos, we found no glomer-

ular capillary endothelial fenestrations at all (Figure 3G).

In order to determine whether glomerular filtration func-

tion was affected in crb2b�/� mutants, we performed a

dye filtration assay in living 4.5 dpf larvae. Both 500 kDa

FITC-labeled and 10 kDa rhodamine-labeled dextrans colo-

calized within the pronephric proximal tubules, indicating

compromised size selectivity in the glomerular filtration

barrier (Figure 3H). We conclude that crb2b is genetically

required for correct foot process arborization and podocyte

morphological differentiation.

Because Crb proteins are required for epithelial apical

basal differentiation, we examined whether cell polarity

might be affected in crb2b�/� podocytes. Phalloidin labels

the F-actin network of podocyte foot processes. In

phenotypically wild-type crb2bwt 4.5 dpf larvae, phalloidin

labeled the basal F-actin rich podocyte processes that cover

the outer aspect of glomerular capillaries. We found that

in crb2b�/�, phalloidin is basally concentrated and seenout-

lining large fused capillaries, indicating that capillary

morphogenesis is affected (Figure 4A). Podocyte apical

membranes are rich in podocalyxin.17 In both crb2bwt sibs

and crb2b�/� embryos, a-Pdxl218 staining is present in po-

docyte membranes, indicating the presence of apical mem-

branes. However, in crb2b�/� podocytes, ectopic a-Pdxl2

membrane extensions are seen in the Bowman’s space (in-

sets, Figures 4B, 4C, and 4F), suggesting apical membrane

defects. Nephrin is a transmembrane protein component

of the podocyte slit diaphragms and basally localized in

crb2bwt podocytes.19–21 In contrast,we foundapicala-neph-

rin12 localization in crb2b�/� podocytes, indicating defects

in nephrin trafficking (insets, Figures 4D and 4G). ZO-1 is

a tight junction protein and also found in podocyte slit dia-

phragms.22,23 In crb2b�/� podocytes, a-ZO-1 staining was

found tobe generally reduced (Figure 4E). These results indi-

cate that apical membrane differentiation and protein traf-

ficking of slit components are affected in crb2b mutants.
The Amer
We employed the zebrafish crb2b�/� mutant to test the

functional consequences of CRB2 mutations identified in

the human families. The human CRB2 open reading frame

(RefSeq NM_173689 [MIM 609720]) was synthesized and

cloned into pcDNA 3.1 by Genescript. Mutations were

introduced into the human CRB2 open reading frame

by site-directed mutagenesis. In crb2bþ/� _ 3 \ incrosses,

crb2b�/� embryos were generated in Mendelian ratios

(Figure 5). However, when an in vitro synthesized mRNA

encoding the human wild-type CRB2 was injected, only

9% of the resulting embyros were phenotypically crb2b

mutant, demonstrating rescue and functional conservation

of the human and zebrafish CRB2 genes. Injection of

mRNA harboring the human CRB2 mutation c.1859G>C

(p.Cys620Ser); CRB2C620S into crb2bþ/�, _ 3 \ incrosses

resulted in 19% crb2b�/�, suggesting that mutation

c.1859G>C (p.Cys620Ser) disrupts CRB2 ability to rescue

and represents a loss-of-function mutation (Figure 5). The

CRB2proteinharboringp.Cys629Ser showed an intermedi-

ate level of rescue compared to wild-type CRB2, suggesting

a milder loss of protein function compared to p.Cys620Ser.

In this report, we show that heritable mutations in the

gene encoding human polarity complex protein CRB2

cause monogenic SRNS in humans. In addition, by testing

for phenotypic complementation in the zebrafish crb2b�/�

mutant, we were able to demonstrate that these mutations

resulted in loss of function and were probably pathogenic

alterations in human CRB2. The discovery that CRB2 mu-

tations cause a recessive Mendelian form of SRNS suggests

that the misregulation of podocyte apical basal polarity

is an important causative factor in primary FSGS. Foot pro-

cess arborization, cytoskeletal architecture, trafficking, and

membrane biogenesis take part in the regulation of apical

basal polarity. Our findings raise the possiblity that genes

encoding other polarity complex members could also be

mutated in heritable and sporadic forms of NS.
Supplemental Data

Supplemental Data include one table and two figures and can

be found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2014.11.014.
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Figure 1. Homozygosity Mapping and WES Identifies CRB2 Mutations as Causing Steroid-Resistant Nephrotic Syndrome in Humans
(A) Nonparametric LOD score (NPL) profile across the human genome in two sibs with SRNS of consanguineous family A1968. SNPmap-
ping was performed with the Affymetrix 250 StyI array. SNP positions on human chromosomes are concatenated from p-ter (left) to q-ter
(right) on the x axis. Genetic distance is given in cM. Five maximumNPL peaks (red circles) indicate candidate regions of homozygosity
by descent. Note that none of the peaks overlap with any of the seven known recessive NS loci.
(B) WES of one of the affected siblings from family A1968 and sequence evaluation within the five mapped homozygous candidate
regions (red circles in A) yields mutation of CRB2 in A1968.
(C) The CRB2 gene extends over 22.49 kb and contains 13 exons (vertical hatches).

(legend continued on next page)
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Figure 2. Localization of CRB2 in Adult Rat Kidney
(A) Coimmunofluorescence of CRB2 (Abgent) with WT1 (Santa Cruz Biotech). CRB2 localizes to podocytes, the nuclei of which are
marked by WT1.
(B–D) Coimmunofluorescence of CRB2 with podocytic markers PODOCALYXIN (B), GLEPP1 (C), and SYNAPTOPODIN (D) (American
Research Products). CRB2 colocalizes most tightly with GLEPP1 among podocytic markers used in immunofluorescence. Note that
PODOCALYXIN and GLEPP1 mark the apical podocyte foot process domain, and GLEPP1 is next to the slit membrane adherens
junctions. SYNAPTOPODIN marks podocyte processes distal of the slit membrane.
Scale bar represents 10 mm. PODOCALYXIN and GLEPP1 antibodies were kindly provided by Roger C. Wiggins at the University of
Michigan.
Investigator of the Howard Hughes Medical Institute and theWar-

ren E. Grupe Professor. A.K. is supported by a HEFC Senior Clinical

Lectureship. The research was also supported by the National
(D) Exon structure of human CRB2 cDNA. Positions of start codon
mutations detected (see F), arrows indicate positions in relation to e
(E) Domain structure of the CRB2 protein. 15 EGF-like; calcium-bin
predicted.
(F)CRB2mutations detected in four families affected by SRNS. Family
1). Sequence traces are shown for homozygous mutations above norm
‘‘HOM’’ denotes homozygous and ‘‘het’’ denotes heterozygous muta
(G) The conservation across evolution of altered amino acid residues
p.Cys629Ser, and p.Arg1249Gln).
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Figure 3. Zebrafish crb2b�/� Mutants Have Morphologically Defective Podocytes
(A and B) Brightfield images of zebrafish 5 days postfertilization (dpf): crb2bwt (A) and crb2b�/� larvae (B). crb2b�/� homozygous mutants
show reduced eye size, pericardial effusion (arrow), and pronephric cysts (asterisk).
(C) Rescue of the crb2b�/� eye, pronephric, and pericardial effusion phenotypes by injection of full-length zebrafish Crb2b mRNA.
(crb2bþ/� _3 \, n ¼ 75; crb2bþ/� _3 \ þ zebrafish Crb2b, n ¼ 183 embryos, p< 0.0001). Complete rescue (black bars) and partial rescue
(gray bars) frequencies are shown. Phenotypes were scored at 4.5 dpf.
(D) Transverse sections at the level of the glomerulus in crb2bwt and crb2b�/� 5 dpf larvae. In controls, the glomerulus is directly ventral to
the notochord (asterisk) and dorsal aorta. In crb2bwt, capillary loops are densely packed and covered with podocytes. In crb2b�/�

glomeruli, capillary loops are fused together and podocytes are attached to the loops.
(E and F) Electronmicrosopic analysis of podocyte foot process organization in control crb2bwt (E) and crb2b�/� (F) homozygotes at 5 dpf.
In crb2bwt, slit diaphragms are visible (black arrowheads in E). The crb2b�/�mutant podocytes show disorganized foot process formation,
apical membrane projections containing slit diaphragms (black arrowheads in F) in the urinary space, and a rarefaction of slit
diaphragms. A glomerular basement membrane is visible. The endothelium lacks membrane fenestrations in crb2b�/� mutants (white
arrowheads in F). Scale bars represent 500 nm.
(G) Quantification of slit diaphragm defects in crb2b�/� mutants (p < 0.001, n ¼ 3 regions/glomerulus from 3 different glomeruli). Data
represent the mean 5 SEM.
(H) Dye filtration assay shows that FITC-labeled 500 kDa (green) and rhodamine-labeled 10 kDa dextran (red) dyes injected into living
4.5 dpf crb2b�/� mutants are both passed into and endocytosed (arrows) by the pronephric proximal tubules. The asterisk marks the
tubule lumen.
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Figure 4. Apical Basal Polarity Is Affected in Zebrafish crb2b�/� Glomerular Podocytes
(A) Phalloidin staining outlines the dense podocyte actin foot process network surrounding capillary lumens. In crb2b�/� mutants,
capillary lumens are not compartmentalized but fused into larger vessels. Insets show enlarged images of podocytes. Asterisks mark
glomerular capillary lumens.
(B) In crb2bwt, a-Pdxl2 localizes to apical podocytemembranes. In crb2b�/�mutant podocytes, a-Pdxl2 staining is found in ectopic apical
projections (arrowheads).
(C) Glomerular basement membranes are visualized by a-wheat germ agglutinin (a-WGA) staining. Asterisks mark glomerular capillary
lumens. Pdxl2 staining is again found in ectopic apical projections in crb2b�/� mutant podocytes (arrowheads).
(D) a-WGA shows glomerular basement membranes. a-Nephrin staining is basally localized in control podocytes but apically
mislocalized in crb2b�/� podocytes (arrowheads).
(E) a-ZO-1 (Zymed) podocyte staining lines the GBM in crb2bwt but is diminished in crb2b�/� mutants. Scale bars represent 10 mm.
(F) Quantification of a-Pdxl2-positive membrane projections in crb2bwt and crb2b�/� podocytes. n ¼ 37 (tallied from 6 embryos) crb2bwt

control and n ¼ 30 (tallied from 4 embryos) crb2b�/� podocytes.
(G) Quantification of a-Nephrin localization in crb2bwt and crb2b�/� podocytes. n ¼ 106 (tallied from 9 embryos) control and n ¼ 67
(tallied from 5 embryos) crb2b�/� podocytes. p < 0.0001.
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Figure 5. Functional Assay of Human
CRB2 Mutations in Zebrafish crb2bþ/�

_ 3 \ Incrosses
Phenotypic frequencies of crb2bwt and
crb2b�/� mutant embryos after injection of
human CRB2 control mRNA and the
mRNAs harboring the mutations
c.1859G>C; CRB2C620S and c.1882C>T;
CRB2C629S (crb2bþ/� _ 3 \, n ¼ 363;
crb2bþ/� _ 3 \ þ CRB2, n ¼ 167, p ¼ 0.02;
crb2bþ/� _ 3 \ þ CRB2C620S, n ¼ 117, p <
0.0001; crb2bþ/� _ 3 \ þ CRB2C629S, n ¼
283, p¼ 0.06; ns, no significant difference).
Phenotypic classes of embryos recovered
from rescue experiments. Partially rescued
embryos have a straight body axis, pheno-
typically wild-type eyes, and lack proneph-
ric cysts but still show somepericardial effu-
sion. No rescue (black bars) and partial
rescue (gray bars) frequencies are shown.
Phenotypes were scored at 4.5 dpf.
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Web Resources

The URLs for data presented herein are as follows:

Ensembl Genome Browser, http://www.ensembl.org/index.html

HomozygosityMapper software,http://www.homozygositymapper.

org/

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/

PolyPhen-2, http://www.genetics.bwh.harvard.edu/pph2/

Renal Genes, http://www.renalgenes.org/

RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq

UCSC Genome Browser, http://genome.ucsc.edu
References

1. Reiser, J., Kriz, W., Kretzler, M., and Mundel, P. (2000). The

glomerular slit diaphragm is a modified adherens junction.

J. Am. Soc. Nephrol. 11, 1–8.

2. Wiggins, R.C. (2007). The spectrum of podocytopathies: a uni-

fying view of glomerular diseases. Kidney Int. 71, 1205–1214.

3. Mekahli, D., Liutkus, A., Ranchin, B., Yu, A., Bessenay, L., Gir-

ardin, E., Van Damme-Lombaerts, R., Palcoux, J.B., Cachat, F.,

Lavocat, M.P., et al. (2009). Long-term outcome of idiopathic

steroid-resistant nephrotic syndrome: a multicenter study.

Pediatr. Nephrol. 24, 1525–1532.

4. ISKDC (1981). Primary nephrotic syndrome in children:

clinical significance of histopathologic variants of minimal

change and of diffuse mesangial hypercellularity. A Report of

the International Study of Kidney Disease in Children. Kidney

Int. 20, 765–771.
160 The American Journal of Human Genetics 96, 153–161, January 8
5. Benoit, G., Machuca, E., and Antignac, C. (2010). Hereditary

nephrotic syndrome: a systematic approach for genetic testing

and a review of associated podocyte gene mutations. Pediatr.

Nephrol. 25, 1621–1632.

6. Lovric, S., Fang, H., Vega-Warner, V., Sadowski, C.E., Gee, H.Y.,

Halbritter, J., Ashraf, S., Saisawat, P., Soliman, N.A., Kari, J.A.,

et al.; Nephrotic Syndrome Study Group (2014). Rapid detec-

tion of monogenic causes of childhood-onset steroid-resistant

nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 9, 1109–1116.

7. Hildebrandt, F., Heeringa, S.F., Rüschendorf, F., Attanasio, M.,
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WT  

Duplication  
of 16 bases 

Figure S1.  Amplification and cloning using the genomic DNA of the 

affected individual from family S1232 showed duplication of sixteen 

bases in exon 10 of CRB2. 

 



Figure S2. Electron microscopic analysis of crb2b-/- glomeruli and podocytes.   

(A) Capillary loops in crb2b-/- glomeruli are disorganized.  Capillary endothelia lack 

fenestrations (capillary lumens are marked with asterisks).  Mesangial cells (m) can be 

identified closedly associated with endothelia and surrounded by GBM.  Scale bar, 2 mm. 

(B) Representative crb2b-/- podocyte shows apical membrane projections (black arrowheads) 

and disorganized foot process structure.  Note the absence of endothelial fenestrations (white 

arrowhead).  Scale bar, 2 mm.  

(C) Detail of crb2b-/- podocyte process.  The disorganized process contains vesicular 

structures (black arrowheads) and apical membrane extensions.  The GBM is visible and 

endothelial membranes lack fenestrations (white arrowhead).  Scale bar, 500 nm. 



Table S1.  Filtering process for variants from normal reference sequence (VRS) 

following WES in one sibling from family A1968 affected with SRNS. 
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