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Experiment Information 

Information gain ratio.  In this work, we employed information gain ratio [25]. Let Attr be the set of all attributes and Ex 

the set of all training examples, value(x, a) defines the value of a specific example x for attribute a,                  

     and  ( )   [   (     (  ))]   ∑ (  )    (   (  ))(        ) specifies the entropy. The information gain for 

attribute        is defined as follows: 
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The information gain is equal to the total entropy for an attribute if for each of the attribute values a unique classification can 

be made for the result attribute. In this case the relative entropies subtracted from the total entropy are 0. The intrinsic value 

for a test is defined as follows: 
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The information gain ratio is just the ratio between the information gain and the intrinsic value: 

( , ) /IGR Ex a IG IV                                                    (3) 

Information gain ratio biases the decision tree against considering attributes with a large number of distinct values. So it 

solves the drawback of information gain—namely, information gain applied to attributes that can take on a large number of 

distinct values might learn the training set too well. 

Calculation of Euclidean distance.  The Euclidean distance or Euclidean metric is the “ordinary” distance between two 

points that one would measure with a ruler, and is given by the Pythagorean formula [16, 17]. The Euclidean distance 

between point p and q is the length of the line segment connecting them. 

In Cartesian coordinates, if    (         ) and    (          ) are two points in Euclidean n-space, then the distance 

from p to q, or from q to p is given by: 
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In this work, we just use two dimensions to calculate the distance, so p= (p1, p2) and q= (q1, q2) then the distance is given 

by 
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http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Training_set


Source code of the algorithm constructing a committee of decision trees  

Input: data.txt, a 71x329 relational table. 

Output: DTc, a committee of 2- or 3- miRNAs’ decision trees with 100% accuracy; nrule, the number of selected decision 

trees; myoutput.txt, all the contents printed in the screen; mygraphs.pdf,  pictures of all the selected decision trees. 

 

sink("myoutput.txt",append=TRUE, split=TRUE); # save the contents of the screen 

pdf("mygraphs.pdf"); # save the output pictures 

rm(list=ls()); 

library(RWeka); #load RWeka 

library(stringr); #load String 

library(gplots); #load Plot 

 

d<-read.table("data.txt",sep="\t"); # load data from a file 

g<-GainRatioAttributeEval(V329~.,data=d); # rank the miRNAs by gain ratio 

t=19; # choose the top-ranked 19 miRNAs after mapping the 5 plasma biomarkers 

i<-order(g,decreasing=T)[1:t]; 

i<-c(i,length(d)) # add the column of class label to the new dataset 

n<-d[,i]; # obtain a new dataset 

nrule<-0; # number of rules 

q<-length(i)-1; # the times of constructiong decisions  

for (c in 1:q){ # the procedure continues unitll only two miRNAs letf 

 DTc<-J48(V329~.,data=n); # use C4.5 to construct a decision tree 

 bc<-summary(DTc)$details["pctCorrect"][[1]]; # the accuracy of the decision tree 

# JUSTIFY THE ACCURACY OF THE DECISION TREE 

 if(bc==100) # if the accuracy equals 100%, then print and draw the decision tree 

 { 

  # JUSTIFY THE NUMBER OF NODES IN THE DECISION TREE 

  str<-DTc$classifier$toString(); # the string structure of the decision tree 

  str1<-strsplit(str," <"); # split the string, str1 is a list 

  str2<-unlist(str1); # transfer a list to a character 

  l<-length(str2); # the length of the character 

  id<-seq(1,328,1); id=0; 



  for (i in 1:(l-1)){ 

   st<-str2[i]; 

   ll<-nchar(st,type="chars",allowNA=FALSE); # the length of a character 

   nst<-substr(st,ll-3,ll); # choose the last four chars 

   nst1<-strsplit(nst,"V"); # separate the character in V 

   num<-nst1[[1]][2]; 

   num<-as.numeric(num); 

   id[i]=num; # the ID of node in the decision tree 

  } 

 

  node<-length(unique(id)); # the number of nodes in the decision tree 

  if (node<4){ 

   plot(DTc); 

   nrule<-nrule+1; 

  } 

   

   

 } 

 

 dtcstr<-DTc$classifier$toString(); # select the root of a decision tree 

 s1<-strsplit(dtcstr,"J48 pruned tree\n------------------\n\n"); 

 s2<-strsplit(s1[[1]][2]," <",); 

 s3<-s2[[1]][1]; 

 #s<-as.numeric(s3); 

 #s3<-str_trim(s3); 

 if(is.na(s3)=="TRUE"){ 

  n[,-1]; 

  } 

 else{ 

  

  n[,eval(s3)]<-NULL; # remove the column of the root 

 } 



} 

 

print(sprintf('The number of selected decision trees is %d', nrule)); 

sink(); 

dev.off(); 


