Randomly allocate the N patients into 5 subsets \mathcal{L}_1 , $\mathcal{L}_2,~\mathcal{L}_3,~\mathcal{L}_4$ and \mathcal{L}_5 of (approximately) equal size. Select \mathcal{L}_1 to be the *test set*, and the remaining four subsets $\mathcal{L}_2,~\mathcal{L}_3,~\mathcal{L}_4$ and \mathcal{L}_5 become the training set. If required, perform feature selection (select m of the total M features) using each of the L patients in the $training\ set$. P_{Train2} P_{TrainL} feature 1 $v_{1,1}$ $v_{1,2}$... $v_{1,L}$ feature 2 $v_{2,1}$ $v_{2,2}$... $v_{2,L}$ feature M $v_{M,1}$ $v_{M,2}$... $v_{M,L}$ \downarrow some feature selection method \downarrow $\mathsf{selected} \ \ \mathsf{feature*} \ \ 1 \qquad \mathsf{feature*} \ \ 2 \qquad \dots \qquad \mathsf{feature*} \ \ m]$ Build the classifier (RF, SVM or DLDA) using the training set. That is, define a function δ : \mathbb{R}^m \rightarrow $\{PP,GP\}$. For each of the J patients in the test set, use the classification function δ defined in the previous step to predict the class in which the patient belongs. P_{Test1} P_{Test2} ... P_{TestJ} feature* 1 $v_{1,2}$... $v_{1,J}$ feature* 2 $v_{2,2}$... $v_{2,1}$ $v_{2,J}$ $v_{m,2}$... $v_{m,J}$ feature* m $v_{m,1}$ $(\delta(v_{1,i},v_{2,i},\ldots,v_{m,i}))_{\substack{i=1,\ldots,J}} = (\text{PP. GP.}\ldots,\text{ GP})$ Determine the first fold error $(FError_1)$: $FError_1 = \frac{\# patients \text{ in } test \text{ set } misclassified}{}$ Repeat using all other test/training set combinations: $[\textcolor{red}{\mathcal{L}_{\mathbf{2}}} | \textcolor{blue}{\mathcal{L}_{1}}, \textcolor{blue}{\mathcal{L}_{3}}, \textcolor{blue}{\mathcal{L}_{4}}, \textcolor{blue}{\mathcal{L}_{5}}], \qquad [\textcolor{blue}{\mathcal{L}_{\mathbf{3}}} | \textcolor{blue}{\mathcal{L}_{1}}, \textcolor{blue}{\mathcal{L}_{2}}, \textcolor{blue}{\mathcal{L}_{4}}, \textcolor{blue}{\mathcal{L}_{5}}],$ $[\mathcal{L}_4|\mathcal{L}_1,\mathcal{L}_2,\mathcal{L}_3,\mathcal{L}_5]], \qquad [\mathcal{L}_5|\mathcal{L}_1,\mathcal{L}_2,\mathcal{L}_3,\mathcal{L}_4]$ to obtain a total of 5 fold errors. The cross validation error is $\text{CV error} = \frac{\sum_{i=1}^{5} FError_{i}}{5}$