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A. SUPPLEMENTARY NOTE 1

In this section we provide estimates of the parameters of the lattice Hamiltonian in

equations (2, 3). The interaction of spin-1 bosons is determined by their s-wave scattering

lengths a0 and a2, with aF denoting the scattering length in the total hyperfine spin F

channel. In case of antiferromagnetic interactions, such as in 23Na considered in this paper,

a2 > a0 > 0 and the ground state is a nematic superfluid [1]. In a deep optical lattice, the

on-site interaction is given by U0 = 2π2

3
a0+2a2

λ
(V0/ER)3/4ER, with the V0 depth of the optical

lattice, and the recoil energy of the optical lattice of wavelength λ given by ER = h2

2mλ2
[2].

The hopping, measured in units of U0, is given by

J

U0

=
3

π5/2

λ

a0 + 2a2
e−2
√
V0/ER , (S1)

and can be easily controlled in an experiment by modifying the lattice depth to reach the

superfluid-Mott insulator transition [2, 3]. The magnitude of the on-site spin interactions is

related to U0 by the scattering lengths [2, 4],

U2

U0

=
a2 − a0
a0 + 2 a2

. (S2)

As a result, the interaction term U2 is suppressed, and is approximately U2 ≈ 0.03U0 in case

of 23Na [3, 4].

The parameters used throughout this paper are set using the scattering length of 23Na,

a0 = 2.75 nm, and a wavelength λ = 594 nm for the optical lattice as used in the experi-

ment in Ref. 3. In the zJ/U0 ≈ 0.2 regime of the phase diagram the parameters become

U0 ≈ 250 nK, U2 ≈ 6 nK and zJ ≈ 50 nK, with z = 6 the number of nearest neigh-

bors. Considering 105 atoms in the trap, the radius of the skyrmion is approximately

R = 30 a ≈ 10µm, with the lattice constant a = λ/2 ≈ 0.3µm.

B. SUPPLEMENTARY NOTE 2

Here we analyze the structure of the local part of the free energy, Floc,r, in equations (4,

13), and discuss its numerical evaluation. Due to the O(3) symmetry of the Hamiltonian in

equations (2, 3), Floc,r can be written as a function of the two rotation-invariant quantities

of the F = 1 spin sector: the superfluid density (%r), and the magnetic moment (fr = |fr|).

In our numerical simulations, in order to evaluate equation (13), we truncate the Hilbert
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space at 5 particles per site, and carry out the trace numerically. Fig. S1 shows plots

of Floc,r in case of nematic (U2 > 0) and ferromagnetic (U2 < 0) interactions. Nematic

condensates favor zero magnetization, fr ≡ 0, and thus, the structure of the nematic ground

state configuration space is (S2×U(1))/Z2. Indeed, in the angular momentum basis of spin

matrices, (Fα)βγ = −iεαβγ, the zero magnetization condition implies Im
(
ΨαΨβ

)
= 0 for

all αβ = x, y, z. Thus, up to a phase factor, Ψ(r) is given by a real vector, as shown in

equation (1). Ferromagnetic condensates, on the other hand, are fully magnetized fr ≡ 1,

and thus, their ground state configuration space is SO(3) [1]. This topological structure,

however, holds no topologically protected ’Mott skyrmion’ configurations.

C. SUPPLEMENTARY NOTE 3

In order to get an order of magnitude estimate of the excitation energies of the skyrmion,

we need to estimate the parameters of the two-dimensional effective Lagrangian in equa-

tion (7), whose structure is dictated by the SO(3) symmetry of the underlying model.

Therefore, in this part of the Supplementary Information, we relate these parameters to

those of the lattice Hamiltonian in equations (2, 3). Note, that the accuracy of this estima-

tion does not influence the ratio of the excitation energies of the skyrmion and of the trivial

sector, shown in Fig. 3.

We approximate the superfluid shell of the skyrmion by a two-dimensional slab of thick-

ness N ≈ 10 lattice sites in the z direction, and we describe it with the action

S =

∫
dt
∑
rα

ibrα ∂tbrα −

(
Hkin +

∑
r

Hloc,r

)
, (S3)

where the Hamiltonian has been defined in equations (2, 3). By assuming a constant, time-

independent profile in the z-direction for low-energy excitations, we can approximate the

action, using the two-dimensional effective Lagrangian in equation (7),

S ≈ N

∫
dt

∫
d2rL[ψ, ψ], (S4)

where we have introduced the continuum fields ψα through the substitution brα/a→ ψα(r),

using the lattice constant a. Thus, the parameters of the Lagrangian are given by m =

1/(2Ja2), µ̃ = µ + 6Jz, g0 = U0 a
2 and g2 = U2 a

2. In the weak coupling limit zJ �

U0, U2 this Lagrangian density can be used to describe the excitation spectrum in the saddle
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point approximation, as shown in the main text. In the strongly interacting limit quantum

corrections renormalize the parameters of the Lagrangian density. We assume, however,

that these effects do not change the order of magnitude of excitation energies significantly,

and therefore we use the bare parameters above to estimate them.

The low energy excitations are of the order E0 = 1/(mRξ2) =
√
g2ρ/mR2 both in the

skyrmion and in the trivial configuration. Assuming a superfluid density ρ = 0.5/a2, we

estimate

E0 ≈
√
U2 J

R/a
≈ 10 Hz (S5)

for the 23Na system with the lattice parameters given in Supplementary Note 1. Given the

increased stability of the ’Mott skyrmion’ considered here, these frequencies should be in

the measurable range.

D. SUPPLEMENTARY NOTE 4

In what follows, we determine and compare the Bogoliubov excitation spectra of the trivial

and the skyrmion configurations. The excitations were analyzed using the effective Lagrange

density in equation (7), considering a thin superfluid shell of radius R. Assuming spherically

symmetric ground state both in the trivial (ψt =
√
ρt ẑ) and in the skyrmion configuration

(ψs =
√
ρs r̂), we determined the two-dimensional superfluid densities using the saddle

point equation δL/δψ = 0. This equation yields ρt = µ/g0 and ρs = (µ− 1/(mR2)) /g0,

respectively. In the skyrmion case, the chemical potential gets renormalized due to the

curvature of the ground state. This curvature effect leads to the depletion of the superfluid

density and affects the excitation spectrum as well.

In the trivial configuration, phase and spin excitations associated with the fluctua-

tions parallel (δψt‖) and perpendicular (δψt⊥) to the ground state ψt, decouple to lead-

ing order. The fluctuation part of the Lagrangian, expanded up to quadratic order, reads

δL = iδψ ∂tδψ −H, with the Hamiltonian density defined as

Ht = δψt

(
−∆2

2m
δψt

)
+ g0ρt

(
|δψt‖|2 +

δψ2
t‖ + δψ

2

t‖

2

)

+ g2ρt

(
|δψt⊥|2 −

δψ2
t⊥ + δψ

2

t⊥
2

)
.

(S6)
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The Bogoliubov excitation energies can be obtained by treating the above Hamiltonian

quantum mechanically, or, equivalently, by determining the eigenvalues of the equations of

motions of the fields

i∂tδψt‖ = −∆2

2m
δψt‖ + g0ρt

(
δψt‖ + δψt‖

)
, (S7)

i∂tδψt⊥ = −∆2

2m
δψt⊥ + g2ρt

(
δψt⊥ − δψt⊥

)
. (S8)

These equations can be easily solved by expanding the fluctuations in terms of spherical

harmonics, yielding the eigenfrequencies

ωph,l =

√(
l(l + 1)

2mR2
+ g0ρt

)2

− (g0ρt)2, (S9)

ωsp,l =

√(
l(l + 1)

2mR2
+ g2ρt

)2

− (g2ρt)2, (S10)

with the angular momentum quantum number l = 0, 1, . . . . For a spherical trap, all ex-

citations in the spin sector have a (2l + 1) × 2-fold degeneracy, whereas phase excitations

are (2l + 1)-fold degenerate. Although for a non-spherical trap the (2l + 1)-fold orbital

degeneracy is removed, the 2-fold degeneracy of spin modes remains, due to spin symmetry.

We find three zero-energy excitations (Goldstone modes) with l = 0 quantum numbers,

corresponding to phase fluctuations and rotations of the ground state around the x and y

axes. (Rotations around the z axis leave the ground state invariant, therefore, they do not

give additional zero modes.) In the limit of large trap radii compared to the superfluid and

magnetic healing lengths, ξ0 = 1/
√
mρg0 and ξ2 = 1/

√
mρg2, respectively, the excitation

energies become

ωph,l ≈
1

mRξ0

√
l(l + 1), (S11)

ωsp,l ≈
1

mRξ2

√
l(l + 1). (S12)

Since the spin coupling is small, g2 � g0, and thus the spin healing length is much larger than

that of the superfluid, ξ2 � ξ0, the low energy spectrum is dominated by spin excitations.

In the skyrmion case, on the other hand, the topological structure of the ground state

modifies the excitation spectrum significantly. The kinetic term of the Hamiltonian in equa-

tion (S6) acquires a curvature term ∆2 → ∆2 + 2/R2 due to the non-trivial spatial structure

of the ground state. Therefore, the equations of motion of spin and density fluctuations,
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δψs⊥ and δψs⊥, respectively, do not decouple and can only be described by the combined

equation

i∂tδψs = −
(

∆2

2m
+

1

mR2

)
δψs + g0ρs (δψs‖ + δψs‖)

+ g2ρs (δψs⊥ − δψs⊥). (S13)

Notice that the action of the seemingly harmless Laplacian is very non-trivial: it mixes paral-

lel and perpendicular fluctuations (δψs‖ ↔ δψs⊥) due to the skyrmion’s geometric structure,

which can also be described by introducing non-Abelian vector potentials, as shown in equa-

tion (17). The excitation energies can be most conveniently found by expanding the fields

in the (orthonormal) basis of vector spherical harmonic functions [5]

Ylm(r) = r̂Ylm(r), (S14)

Ψlm(r) = r ∇Ylm(r)/
√
l(l + 1), (S15)

Φlm(r) = r̂×Ψlm(r), (S16)

that are defined using the spherical harmonics, Ylm, of angular momentum quantum numbers

l and m. Due to their vectorial nature, vector spherical functions form a representation of

the total angular momentum operators ~J = ~L+ ~F with quantum numbers (j,mJ) = (l,m),

where the operators ~J account for simultaneous spatial (~L) and spin (~F ) rotations.

As can be seen from the formulas above, the vector functions Ylm, defined for all l ≥ 0,

always point in the radial direction; therefore, they span the space of density fluctuations

δψs‖. In particular, the function Y00 ∝ ψs corresponds to the skyrmion configuration itself,

and thus, the fluctuation of the corresponding expansion coefficient describes the global

phase fluctuations of the skyrmion. Perpendicular fluctuations, on the other hand, are

spanned by the fields Ψlm and Φlm, which are defined for l = 1, 2, . . . angular momenta.

Since the Laplacian leaves the Φ-sector invariant,

−∆2Φlm =
l(l + 1)

R2
Φlm, (S17)

excitations in this sector decouple from the (Y,Ψ)-fluctuations, and the corresponding (2l+

1)-fold degenerate excitation energies can be derived analytically,

ωΦ,l =

√(
l(l + 1)− 2

2mR2
+ g2ρs

)2

− (g2ρs)2. (S18)
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In case of large trap radii, R� ξ0, ξ2, these become

ωΦ,l ≈
1

mRξ2

√
l(l + 1)− 2. (S19)

Specifically, for l = 1 angular momenta, we find three zero energy modes corresponding to

the rotations of the skyrmion around the x, y and z axes in parameter space. Therefore,

together with the global phase fluctuations in the Y00 subspace, there are four Goldstone

modes in the skyrmion sector. The increased number of Goldstone modes, as compared to

the trivial sector, is due to the topological winding of the skyrmion.

The excitation energies of the (Y,Ψ)-sector are more complicated, since the Laplacian

is non-diagonal in these fields,

−∆2

Ylm

Ψlm

 =
1

R2

 l(l + 1) + 2 −2
√
l(l + 1)

−2
√
l(l + 1) l(l + 1)

Ylm

Ψlm

 , (S20)

thereby mixing parallel and perpendicular fluctuations. The excitation energies are given

by the eigenvalues of the Bogoliubov-Hamiltonian

HYΨ
l =

1

2mR2

 Ωl Λm

−Λm −Ωl

 , (S21)

defined using the matrices

Ωl =

l(l + 1) +
√

2R/ξ0 −2
√
l(l + 1)

−2
√
l(l + 1) l(l + 1)− 2 +

√
2R/ξ2

 (S22)

and

Λm = (−1)m
√

2R

1/ξ0 0

0 −1/ξ2

 . (S23)

In a spherically symmetric trap there are two branches of excitation energies for all l =

1, 2, . . . angular momenta, both being (2l+ 1) degenerate. In the g2 � g0 limit the lower of

these branches approaches the energies of the corresponding ωΦ,l ∼ 1/(mRξ2) spin excita-

tions, whereas the other branch, describing mainly phase excitations, stays at large energies

∼ 1/(mRξ0).

An investigation of the l = 1 excitations reveals a weak instability of the spherically

symmetric ground state ψs towards a slight uniaxial deformation, as we verified through

detailed numerical simulations. This spontaneous symmetry breaking does not influence
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the number of Goldstone modes, protected by symmetry, however, as indicated in Fig. 3,

it slightly splits the non-zero energy excitations due the O(3)→ O(2) rotational symmetry

breaking of the ground state. In particular, the lower branch of the l = 1 excitations in

the (Y,Ψ)-sector splits in a 3→ (2 + 1)-manner and their energies become extremely close

to zero. No such instability has been observed in our three-dimensional lattice simulations,

though their real space resolution have most likely been insufficient to detect this small

symmetry breaking.

E. SUPPLEMENTARY NOTE 5

In this section, we analyze the low energy absorption spectrum of the skyrmion in a

lattice modulation experiment, in which atom tunneling along one axis is modulated by

periodically varying the depth of the optical lattice. Specifically, modulations along the

z axis correspond to a variation of the z-hopping parameter in equation (2). In terms of

the two-dimensional effective model of excitations in equation (7), this corresponds to a ∂2z

perturbation operator, as can be seen from the discussion below equation (S4). This term

has spin F = 0, and it is a linear combination of the tensor operators

T0,0 = (∂2x + ∂2y + ∂2z )/
√

3, (S24)

T2,0 = (∂2x + ∂2y − 2 ∂2z )/
√

6, (S25)

with angular momentum quantum numbers (l,m) = (0, 0) and (2, 0), respectively.

The symmetries of our probe operators lead to selection rules for the states that can be

excited in the spherically symmetric skyrmion configuration, ψ ∝ Y00 ∝ r̂ [6]. Since T0,0 and

T2,0 are derivative operators, they commute with the angular momentum L2 = −∆2, and

they will not mix the subspace (Ylm,Ψlm) vector spherical harmonics with Φlm functions, the

latter forming an eigenspace of L2 (see equation (S17)). Further selection rules follow from

the rotational symmetries of the perturbation operators under spatial and spin rotations,

due to the Wigner-Eckart theorem [7]. Working in the basis of total angular momentum

quantum numbers, it can be easily shown that the only non-vanishing matrix elements
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describing excitations of the spherically symmetric skyrmion ground state are

〈Y2,0|T2,0|Y0,0〉 = −
√

2

15
, (S26)

〈Ψ2,0|T2,0|Y0,0〉 =
1√
5
, (S27)

〈Y0,0|T0,0|Y0,0〉 = − 2√
3
. (S28)

Therefore, modulations of the atom tunneling along the z axis can only create (l,m) = (2, 0)

excitations, and only in the (Y,Ψ) sector. These correspond to a high energy density

excitation, and a small energy spin excitation, the latter being shown in the lower branch of

the l = 2 levels in Fig. 3. Such low energy levels cannot be excited in the trivial configuration,

whose lattice modulation spectrum contains only high energy density fluctuations, to linear

order. Thus, the presence of such a low energy excitation peak in the modulation spectrum

is an unambiguous fingerprint of the skyrmion texture.
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FIG. S1. Local part of the free energy. (a) and (b) show Floc(%, f) in case of nematic (U2 > 0)

and ferromagnetic (U2 < 0) interactions, respectively. The dots indicate the minima of the free

energy, favoring a non-magnetized (fully magnetized) superfluid in the nematic (ferromagnetic)

case. [Physical parameters of the plot: T/U0 = 0.05, U2/U0 = 0.025, zJ/U0 = 0.40, µ/U0 = 0.08.]
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