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Modeling Environmental Predictability. Phenotypic plasticity relies
on the ability to anticipate future environmental conditions. In
many situations, this can be done by attending to environmental
features that precede (and are correlated with) changes in rel-
evant environmental parameters. For example, variation in day
length tends to be well correlated with impending changes in
temperature within temperate regions, and changes in barometric
pressure often forecast approaching storms, strong winds, and
heavy rain. We refer to these anticipatory events as environmental
cues and model their information content by altering the degree
to which they are correlated with future changes in the parameter
of interest (i.e., temperature in our model). Thus, when cues are
highly correlated with the parameter of interest we say that the
environment is very predictable, and vice versa. We modeled
environmental predictability, P, as a parameter that measures the
correlation between cues, C, and environment, E, ranging from
0 (i.e., environmental cues contain no information on the po-
tential future state of the environment) to 1 (i.e., environmental
cues provide perfect information on the future state of the en-
vironment). Mathematically, environmental cues, C, are drawn
in our model from a Gaussian distribution with mean

H= PE7
and SD
o= (1-P)/3,

such that C = E when P = 1, but C is uncorrelated with E when
P =0 (Fig. S1). Because 99.7% of the values in a normal distri-
bution are contained within 3 SDs from the mean, dividing by
three in the equation for sigma ensures that cues are primarily
from the natural range of possible environmental values (i.e.,
[-1,1]). For example, at the extreme case with most variability—
i.e., when P = 0—note that y = 0 and 36 = 1.

Genotypic Variation Within Populations. In the main text we focus on
population-level responses at 50,000 generations. However, we also
investigated the patterns of genotypic variation within populations,
because the same kind of average outcome could be realized by
either a genetically monomorphic or a genetically polymorphic
population. Briefly, we observed that evolution consistently resulted
in genetically monomorphic populations in our model (Fig. S2),
even at the boundaries between response mode regions where
average outcomes varied among replicates.

Evolutionary Transitions When Changes in Environmental Parameters
Lead to Correlated Changes in the Genotype Favored by Selection.
The highly consistent evolutionary outcomes observed in Fig. 2
indicate that the complex, multidimensional fitness landscape of
our model tends to exhibit a single adaptive peak throughout most
of parameter space. However, the evolution of different outcomes
in different replicate simulations at the boundaries between re-
sponse mode regions indicates that multiple adaptive peaks are
likely to occur in the fitness landscape as selection shifts from
favoring one outcome to another (Fig. S3).

Effects of Alternative Genotype-to-Phenotype Mapping and Algorithms
for Selection. Our general findings are robust to alternative geno-
type-to-phenotype mapping schemes and to the consideration of
evolutionary processes that may increase genetic variation within
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populations. Briefly, in all of the model variants that we have ex-
plored thus far, we find that a single response mode has a clear
selective advantage over all others at each parameter combination
and that, overall, the parameter space is divided into distinct response
mode regions with relatively well-defined boundaries (Fig. S4).

To explore the effects of alternative genotype-to-phenotype
mapping, we encoded norms of reaction as logistic rather than
linear functions. In this model variant

I=2/[1+exp(ly—b-C)] -1,

where Iy and b are genetically inherited traits, and C is the
current value of the environmental cue.

We also evaluated the robustness of our findings to processes
that may increase genetic variation within populations by ex-
ploring the effects of density- and frequency-dependent selection.
Negative density-dependent selection was implemented via the
standard Beverton-Holt equation for population dynamics (1),
where the total number of individuals in the next generation is
a function of current population size. Thus, in the density de-
pendent variant of our model, the number of offspring for in-
dividual i was drawn from a Poisson distribution with mean,
u=G-W;/Wya, where G is the per capita growth factor and
Wax is the payoff an individual would accrue if it paid no costs
and were able to match the exact temperature of its environment
every time step of its life. The per capita growth factor, G, in this
equation was computed as

G =ﬁ/(1+a~N),

where a and f are constants (« = 0.00001 and g = 2 in Fig.
S4C), and N is the current adult population size. To prevent
unbounded population growth, excess offspring were selected at
random and removed from the population whenever the new
population size exceeded a carrying capacity of 5,000 individuals.

In the model variant with frequency-dependent selection, W;
was weighted by the uniqueness of an individual’s phenotype.
Here, a rare phenotype advantage was implemented by com-
puting time step-specific payoffs as

Wis = exp(—|E;—Iyy|-7) - [1—exp(=|I —1|- )],

where [ is the mean insulation phenotype for the entire popula-
tion, I;, is the insulation phenotype of individual i at time step ¢,
and ¢ is a constant that determines how strongly fitness improves
for more unique individual insulation values (r = 2 and ¢ = 2 in
Fig. S4D). The cumulative payoff, W, for individual i in this model

variant was then computed as the sum total of payoffs throughout
its lifetime minus any costs of phenotypic adjustment. Thus

W = ZLj Wi,
t=0

for nonplastic individuals and

L
Wi= > Wi—kq—n kg,

t=0

for plastic individuals.
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Effects of Variation in Maximal Fecundity on Extinction Rates After
Environmental Change. Fig. S6 depicts the potential for extinction
at each parameter combination (inner squares) as well as during
transitions between adjacent combinations in parameter space for
different values of g—i.e., the average number of offspring that
an individual produces when it pays no plasticity costs and is able
to exactly match its environment at every time step of its life.
When reproductive output is low (smaller g), a major component
of extinction during transition is related to the high baseline
levels of extinction when moving into environments that vary
quickly and are fairly unpredictable. As g increases, baseline
levels of extinction are radically reduced. However, the chal-
lenges of restructuring the genome to achieve a new optimum
remain whenever crossing into a new response mode region.

Interpreting Model Results in the Context of Global Climate Change.
Our model investigates evolutionary responses to any type of
change in the characteristics of the environment, irrespective of
scale and causes. However, in this section, we provide a non-
technical overview of how our model may apply, in particular, to
the highly relevant context of global environmental change. The
recent past has seen an unparalleled and rapid rise in mean
temperatures and sea levels around the globe, as well as a cor-
responding increase in the frequency and unpredictability of
extreme weather events (2-5). Our model addresses these po-
tential environmental changes in the following ways:

Rapid change in mean environmental conditions. Earth’s climate ex-
hibits multiple types of oscillations, each of which operates at
different timescales. For example, in addition to the yearly
changes in precipitation and temperature that define our sea-
sons, quasi-periodic phenomena like the El Nifio/Southern Os-
cillation can influence environmental conditions and change the
intensity of climatic extremes every 2-7 y (6). Similarly, temporal
variation in Earth’s orbit around the sun can lead to gradual
changes in mean environmental parameters on much longer
timescales, ultimately resulting in phenomena like the glacial and
interglacial periods (7). We have become increasingly aware in
recent years that anthropogenic activity has resulted in changes
to these underlying environmental cycles (2, 6). Our model al-
lows us to explore the effects of such disturbances through
changes in the parameter that controls the relative timescale of
variation, R. In the main text we define R as the number of
environmental oscillations per lifespan. Thus, to study the po-
tential effects of speeding up the rate at which environmental

. Beverton RJH, Holt SJ (1957) On the Dynamics of Exploited Fish Populations. Fishery In-
vestigations Series Il (U.K. Ministry of Agriculture, Fisheries, and Food, London), Vol XIX.
2. Solomon S, et al., eds (2007) Climate Change 2007: The Physical Science Basis (Cam-
bridge Univ Press, New York).
3. Bradshaw WE, Holzapfel CM (2006) Climate change. Evolutionary response to rapid
climate change. Science 312(5779):1477-1478.
4. Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N (2012) Eco-evolutionary
responses of biodiversity to climate change. Nature Climate Change 2(10):747-751.
. Skelly DK, et al. (2007) Evolutionary responses to climate change. Conserv Biol 21(5):
1353-1355.
6. Meehl GA, et al. (2000) Trends in extreme weather and climate events: Issues related
to modeling extremes in projections of future climate change. Bull Am Meteorol Soc
81(3):427-436.
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conditions vary, we can evaluate how populations respond when
transitioning into regions of parameter space with lower R.
When considering the potential effects of a given environmental
change, we emphasize that R is a relative index, and that as such,
its value will depend on lifespan. For example, although envi-
ronments that change at a rate of 1 °C/y can be approximated by
a large R when considering short-lived organisms like bacteria,
they are better characterized as low R when considering long-
lived organisms like elephants or Sequoia trees. In other words,
a given change in environmental cycles can potentially have very
different consequences on species with different lifespans. Ad-
ditionally, given that shorter lifespans increase the value of R,
our model can inform us on the potential consequences of
global-change-related reductions in lifespan (8) by exploring how
populations respond to transitions into regions with higher
R values.

Changes in the frequency and predictability of extreme weather events. It
may be tempting to believe that because environmental changes
are approximated in our evolutionary simulations as simple si-
nusoidal cycles, the world is always somewhat predictable to our
virtual individuals. That, however, is not the case and therefore we
emphasize again that there is an important distinction between
the way that environments vary and how predictable that variation
is. As demonstrated in the main text, when there is no information
regarding the phase of the cycle that the environment is currently
at, the manner in which environments vary is completely irrele-
vant to evolution [i.e., adaptive outcomes are identical whether
we model environmental change as a series of stochastic events—
A =0, B =1, and therefore, E, = ¢ —or as simple sinusoidal
cycles—A = 1, B = 0, and therefore, E, = sin(2z#/LR)]. Thus, to
explore the consequences of the increasing unpredictability of
local environments in the context of climate change, we do not
need to model increasingly irregular environmental cycles but
rather alter the amount of information provided to individuals
about the future states of their environment. In addition, by
decoupling predictability from variability, our model provides
important insights into the different effects of faster environ-
mental change and more unpredictable conditions, both in-
dependently and in combination. Some insightful examples of
how researchers have identified the use of informative environ-
mental cues in natural systems that have evolved because of their
tight correlation with future environmental conditions include
work on hares (9), gulls (10), and jays (11).

7. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth'’s orbit: Pacemaker of

the Ice Ages. Science 194(4270):1121-1132.

8. Munch SB, Salinas S (2009) Latitudinal variation in lifespan within species is explained
by the metabolic theory of ecology. Proc Nat/ Acad Sci USA 106(33):13860-13864.

. Mills LS, et al. (2013) Camouflage mismatch in seasonal coat color due to decreased
snow duration. Proc Natl Acad Sci USA 110(18):7360-7365.

10. Brommer JE, Rattiste K, Wilson AJ (2008) Exploring plasticity in the wild: Laying date—
temperature reaction norms in the common gull Larus canus. Proc R Soc B Biol Sci
275(1635):687-693.

. Ratikainen II, Wright J (2013) Adaptive management of body mass in Siberian jays.
Anim Behav 85(2):427-434.
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Fig. S1. Effect of predictability, P, on the statistical association between cues, C, and environmental temperatures, E, in our model. Plots depict cues derived
from 200 randomly selected values of E when (A) P =1, (B) P=0.5, and (C) P= 0.
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Fig. S2. Among- and within-replicate variation evolved in our model at generation 50,000. Norms of reaction are depicted as in Fig. 2, with environmental
cues on the x axis and the resulting insulation phenotype on the y axis (labels omitted for simplicity). (A) Variation among replicates is depicted by plotting the
average reaction norms for each of 100 independent replicate simulation runs (same as Fig. 2A). (B) Variation within replicates is depicted by plotting the
reaction norms for each of 5,000 individuals from one representative example at each parameter combination. As in the main text, primary reaction norms are
plotted in black (s < 0.5) or in a color gradient from blue (s > 0.5, a = 0) to red (s > 0.5, a = 1), and secondary reaction norms are plotted in green with more
intense colors indicating that a greater number of populations or individuals share a particular response. Importantly, the coexistence of different response
modes within a replicate occurs primarily at the boundaries between adjacent response mode regions.
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Fig. $3. Fitness landscapes illustrating the emergence of evolutionary tipping points. (A) Plots depicting the change of an idealized 1D fitness landscape with
an environmental parameter like R or P. Genotypes corresponding to different adaptive response modes are depicted in different colors. For most values of the
environmental parameter, the fitness landscape exhibits a single adaptive peak, leading to a consistent evolutionary outcome in all replicate simulations.
Changes in the environmental parameter correspond to (relatively small) shifts in the location of the adaptive peak, which can relatively easily be tracked by
adaptive evolution. However, when the environmental parameter approaches a value corresponding to a boundary between two response mode regions, the
landscape exhibits multiple adaptive peaks (middle plot in top panel), and evolutionary outcomes can therefore vary among replicate simulations. A further
change in the environmental parameter corresponds to the disappearance of the earlier fitness peak, necessitating the rapid evolution to the new fitness peak
that may be separated from the earlier peak by a large distance in genotype space. The hysteresis plot in B depicts this situation for R = 100 generations per
environmental cycle—i.e., log(R) = 2 in Fig. 2—(cbh = conservative bet hedging; dbh = diversifying bet-hedging; ip = irreversible plasticity; rp = reversible
plasticity; at = adaptive tracking). At low predictability values we observe only the evolution of diversifying bet-hedging, whereas at high values we see only
the evolution of irreversible (or developmental) plasticity. However, close to the boundary between these regions (depicted here in gray) we see that replicates
can result in either one of these evolutionary outcomes.
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Fig. S4. Mean evolutionary outcomes at generation 50,000 for different parameter combinations under different model assumptions. (A) Reaction norms
evolved under the baseline model described in the main text (same as depicted in Fig. 2). (B) Reaction norms evolved under the model variant with alternative
genotype-to-phenotype mapping (i.e., reaction norms encoded as logistic rather than linear functions). (C) Reaction norms evolved under the model variant
with negative density-dependent selection implemented through Beverton-Holt population dynamics. (D) Reaction norms evolved under the model variant
with negative frequency-dependent selection implemented through a rare phenotype advantage. Ten replicate simulations are depicted per subplot in B-D
and 100 replicates per subplot are depicted in A. Note that similar response mode regions are observable across the different model variants.
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Fig. S5. Adaptive tracking vs. conservative bet-hedging in highly unpredictable environments (here P = 0). Environmental cycles are depicted in black and the
mean population phenotypic value of I, is depicted in red. The evolved norms of reaction at generations 250 (dashed lines) and 1,000 (continuous lines) are
shown to the right of each plot. (A) When environments change very slowly (here log R = 3), norms of reaction evolve accordingly through mutation and
natural selection, leading to phenotypic changes in the population over time. (B) In contrast, when environments change very rapidly (here log R = 0), adaptive
tracking is not possible and a phenotype that matches the average value of environmental conditions (i.e., lp ~ 0) becomes fixed.
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Fig. S6. Effects of reproductive potential on relative rates of extinction during transition into a new set of environmental parameters. Each subplot within each
panel depicts the baseline level of extinction at a given parameter combination (inner square), and the relative extinction rates (see main text for details) associated
with transitioning into the nearest parameter combination to the top, bottom, left, and right of that cell (trapezoids). Colors depict the gradient of extinction from
0% (gray) to >100% (red). For comparison purposes, the boundaries between response mode regions in Fig. 2B are presented as dashed lines. When reproductive
output is low (smaller g; A and B), a major component of extinction during transition is related to the high baseline levels of extinction when moving into en-
vironments that vary quickly and are fairly unpredictable. As g increases (C and D), the baseline levels of extinction decrease considerably throughout parameter
space but the challenges of restructuring the genome to achieve a new optimum remain whenever crossing into new response mode regions.
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Table S1. Phenotypic implications of the main reaction norms evolved in our model

Reaction norm Phenotypic implications

= Individuals produce more insulation at higher levels of the environmental cue (s > 0.5 and b or b’ ~ 1)
= Individuals adjust their phenotype every time step after development (a ~ 1)
§ o Adaptive mode: reversible plasticity
£

-1 0 1
Cue (C)
- | Individuals produce more insulation at higher levels of the environmental cue (s > 0.5and bor b’ ~ 1)

Individuals are plastic during development but do not adjust their phenotype afterward (a ~ 0)
Adaptive mode: irreversible plasticity

Insulation (/)
0

1 0 1
Cue (C)
- Individuals produce a single, nonadjustable phenotype at all possible environmental cues (s < 0.5)
= Adaptive mode: single, fixed reaction norms occur in two contexts in our model (see Fig. 3 for details)
5 - () In adaptive tracking, individual insulation levels closely match current environmental conditions, and mean
= population phenotypes vary gradually over time following the underlying environmental cycle
w
£ (i) In conservative bet-hedging insulation levels are always approximately zero; thus, although these
- individuals rarely ever match their current environmental conditions, they exhibit low variance in fitness
1 0 1 by minimizing their average thermal mismatches over time
Cue (C)
- Individuals produce a single, nonadjustable phenotype at all possible environmental cues (s < 0.5)
= The phenotype depicted in black is produced with probability h and the one depicted in green is produced
5 with probability 1 - h
5 = Adaptive mode: diversification bet-hedging
w
[=
-1 0 1
Cue (C)
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