Highly Enantioselective, Intermolecular Hydroamination of Allenyl Esters Catalyzed by Bifunctional Phosphinothioureas

Yuan-Qing Fang, Pamela M. Tadross, and Eric N. Jacobsen*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138

Supporting Information

Table of Contents

1.	Suppo	rting data for optimization studies	S2
	1.1.	Table S-1: Nitrogen nucleophile survey	S2
	1.2.	Table S-2: Carbamate nucleophile optimization	S2
	1.3.	Table S-3: Catalyst fine-tuning optimization	S3
	1.4.	Scheme S-1: Phosphinothiourea-catalyzed equilibration of	
		propargyl and allenyl esters	S3
	1.5.	Table S-4: Comparison of polyfunctional and monofunctional	
		phosphine catalysis	S4
	1.6.	Scheme S-2: Product deprotection and absolute stereochemistry	
		assignment	S4
	1.7.	Scheme S-3: Examples of failed substrates	S4

2.	Expe	rimental procedures	S5
	2.1	General Information	S5
	2.2	Catalyst preparation	S6
	2.3	Phosphinothiourea-Catalyzed Hydroaminations	S7
	2.4	<i>N</i> -methoxy cleavage	S15
	2.5	<i>N</i> -Alloc deprotection and absolute stereochemistry	S16
		1	

1. Supporting data for optimization studies

1.1 Table S-1: Nitrogen nucleophile survey

1.2 Table S-2: Carbamate nucleophile optimization

1.3 Table S-3: Catalyst fine-tuning optimization

1.5 Table S-4: Comparison of polyfunctional and monofunctional phosphine catalysis

1.6 Scheme S-2: Deprotection and absolute stereochemistry assignment¹

1.7 Scheme S-3: Examples of failed substrates

2. Experimental Procedures

2.1 General Information

All reaction vessels were evacuated and backfilled with nitrogen three times before use unless otherwise noted. Solvents and solutions were transferred by syringes or cannulae using standard inert atmosphere techniques.

¹H, ¹³C, and ³¹P NMR spectra were obtained using an Inova-600, Inova-500 or Mercury 400 spectrometer. ¹H NMR spectra were referenced to residual CHCl₃ peak (7.26 ppm) using CDCl₃ as solvent. ¹³C NMR spectra were referenced to solvent carbons (77.23 ppm for CDCl₃). When ¹³C signals are coupled to ³¹P, no specific couplings were assigned. ³¹P NMR spectra were referenced to the external H₃PO₄ signal.

Infrared spectra were obtained using thin films of products. Only absorption frequencies higher than 1000 cm⁻¹ are reported. Optical rotations were measured using a 2.0 mL cell with a 1.0 dm path length. High Resolution Mass Spectrometry (HRMS) data were obtained at the Harvard University mass spectrometry facility. Chiral SFC analysis was performed using superfluid CO₂/MeOH as the eluent. Chiral HPLC analysis was performed using hexanes/isopropanol as the eluent.

Analytical TLC was performed using EM Separations pre-coated silica gel 0.2 mm layer UV 254 fluorescent sheets. Column chromatography was carried out as flash chromatography on EM Science silica gel 60 (230–400 mesh) using the indicated eluent. Unless otherwise specified, extracts were dried over MgSO₄ and volatile solvents were removed with a rotary evaporator at reduced pressure (~40 mmHg).

Carbamate **2a** was prepared using MacMillan's method.² Carbamate **2b** was prepared us Kikugawa's method.³ Carbamate **2c** was prepared according to the literature method followed by vacuum distillation purification.⁴ Allenyl ester **1** was prepared (>99% purity, 87% yield) following a published procedure from propionyl chloride, ethyl (triphenylphosphoranylidene)acetate, and Et₃N.⁵ Propargyl ester **6** (>99% purity) was prepared using a DCC/DMAP coupling of pent-3-ynoic acid⁶ and EtOH at 0 °C. Additional propargyl ester substrates in Table 2 were prepared according to Fu's Culcatalyzed reaction of terminal alkynes and ethyl diazoacetate in CH₃CN at room temperature.⁷ The method provided the corresponding propargyl ester containing 2–10% of the corresponding allenyl ester, which was used without removal of the allenyl esters. Racemic samples for Table 2, entries 2, 7, 10 were prepared by PPh₃-catalyzed addition of **2b** or **2c** to corresponding allene substrate. The sample contains certain amount of the α -addition adduct (after chromatographic separation) in the SFC trace. For the remaining entries in Table 2, SFC or HPLC traces corresponding to the pure product samples from anti-poles of the catalyst performed using slightly different catalyst loadings.

2.2 Catalyst preparation

(*R*)-2-(3-((*1S*,*2S*)-2-(diphenylphosphino)cyclohexyl)thioureido)-*N*,*N*-dimethyl-3-phenylpropanamide (**3e**)

To a suspension of Boc-D-Phe-OH (0.795 g, 3.0 mmol) and HBTU (1.25 g, 3.3 mmol) in CH₂Cl₂ (15 mL) was sequentially added DIPEA (1.05 mL, 6 mmol) and dimethylamine (2 mL, 2 M in THF). The mixture was stirred at room temperature for 3 hours and the residue following removal of solvent was purified by silica gel column chromatography (50% EtOAc in hexanes) to yield the product as a gum-like compound. The gum was dissolved in an HCl in dioxane solution (7.5 mL, 4 M) and stirred at room temperature for 3 hours. Excess HCl and dioxane was removed under reduced pressure and the residue was triturated with Et₂O (~10 mL), filtered, washed with Et₂O (3 × 5 mL) and dried under vacuum to give the product as a white solid (0.585 g, 85% yield, 2 steps).

To a vigorously stirring mixture of the amine hydrochloride salt (0.114 g, 0.5 mmol) in a biphasic mixture of CH_2Cl_2 (5 mL) and NaHCO₃ (10 mL) at 0 °C was added $CSCl_2$ (0.042 mL, 0.55 mmol). (Caution: Highly toxic and stench!) The mixture was stirred at this temperature for 15 minutes and warmed to room temperature, where it was stirred for an additional 10 minutes. The biphasic solution was partitioned and the aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phases were dried over Na₂SO₄ and concentrated under vacuum to yield the crude product (120.6 mg), which was used in next step without further purification.

To a solution of the crude isothiocyanate in CH₂Cl₂ (2.5 mL) was added (*S*,*S*)-*trans*-hexaneaminophosphine (145.6 mg, 0.514 mmol) under a N₂ atmosphere. The resulting solution was stirred at room temperature for 18 hours and then concentrated under vacuum. The residue was purified by silica gel flash chromatography (33% EtOAc in hexanes) to afford catalyst **3e** as a foamy white solid (0.250 g, 94% yield): $[\alpha]^{D} = 25.0^{\circ}$ (c = 0.8, CHCl₃); IR (thin film): 3311, 3053, 2928, 1735, 1628, 1532, 1433, 1239, 1092 cm⁻ 1; ¹H NMR (600 MHz, CDCl₃) δ 7.53–7.50 (4H, m), 7.34–7.25 (12H, m), 6.86 (1H, br), 5.79 (1H, br), 4.33 (1H, br), 3.28 (1H, dd, *J* = 12.6, 4.4 Hz), 2.92 (1H, dd, *J* = 12.3, 10.5 Hz), 2.80 (3H, s), 2.60 (3H, s), 2.44 (1H, td, *J*⁴ = 9.5 Hz *J*^d = 2.9 Hz), 2.37 (1H, br), 1.86–1.73 (4H, m), 1.45–1.36 (2H, m), 1.31–1.26 (1H, m), 1.16–1.11 (1H, m); ¹³C NMR (125 MHz, CDCl₃) δ 180.4, 172.2, 136.9, 136.8, 136.7, 135.94, 135.8, 134.7, 134.6, 133.1, 133.0, 129.7, 129.1, 128.6, 128.53, 128.49, 128.44, 128.38, 128.3, 127.1, 55.5, 54.7, 54.6, 41.0, 40.9, 40.4, 37.4, 35.8, 33.4, 27.4, 25.4, 24.4; ³¹P NMR (162 MHz, CDCl₃) δ –8.3; HRMS (TOF-ESI) calc'd for C₃₀H₃₇N₃OPS [M+H]⁺ 518.2390, found 518.2401.

2.3 Phosphinothiourea-Catalyzed Hydroamination

(S, E)-Ethyl 4-((allyloxycarbonyl)(methoxy)amino)pent-2-enoate (Table 2, entry 1)

General procedure for phosphinothiourea-catalyzed hydroamination of propargyl esters: An oven-dried 2-dram vial was charged with catalyst 3e (2.1 mg, 2 mol%) and capped with a Teflon septum. After three cycles of evacuation and backfilling with nitrogen, dry Et₂O (2 mL) was added to the vial via syringe. Upon cooling the catalyst solution to 0 °C, carbamate 2c (26.2 mg, 0.2 mmol) and propargyl ester 6 (38 mg, 0.3 mmol) were added sequentially. The sealed vial was maintained with stirring at 0 °C (ice bath) for 20 hours until TLC analysis showed complete consumption of the carbamate starting material. Upon completion, the solvent was removed under reduced pressure and the crude residue was purified by silica gel column chromatography (20% EtOAc in hexanes) to give the product (4c) as a colorless oil (51.4 mg, 99% yield). A larger scale reaction (16 mmol) afforded the product in 97% yield and 94% ee. The enantiomeric excess was determined to be 94% by chiral SFC ((*S*,*S*)-Whelk-O, 3% methanol in CO₂, 3

mL/min, 30 °C, 210 nm. $t_{\rm R}$ (minor): 3.48 min, $t_{\rm R}$ (major): 3.87 min). $[\alpha]^{\rm D} = -30.1^{\circ}$ (c = 1.0, CHCl₃); IR (thin film): 2982, 2941, 1713, 1658, 1448, 1369, 1268, 1182, 1062, 1034 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.95 (1H, dd, J = 15.8, 5.9 Hz), 5.94 (1H, ddt, $J^{\rm d} = 17.2, 10.4$ Hz, $J^{\rm t} = 5.6$ Hz), 5.92 (1H, dd, J = 15.9, 1.5 Hz), 5.34 (1H, dq, $J^{\rm d} = 17.2$ Hz, $J^{\rm q} = 1.5$ Hz), 5.25 (1H, dq, $J^{\rm d} = 10.4$ Hz, $J^{\rm q} = 1.3$ Hz), 4.78 (1H, qdd, $J^{\rm q} = 6.9$ Hz, $J^{\rm d} = 6.0, 1.6$ Hz), 4.70–4.64 (2H, m), 4.19 (2H, q, J = 7.1 Hz), 3.74 (3H, s), 1.39 (3H, d, J = 6.7 Hz), 1.28 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 157.4, 146.1, 132.3, 122.7, 118.6, 67.1, 64.8, 60.7, 56.2, 16.5, 14.4; HRMS (TOF-ESI) calc'd for C₁₂H₁₉NO₅Na [M+Na]⁺ 280.1155, found: 280.1155.

(*S*, *E*)- ethyl 4-((benzyloxycarbonyl)(methoxy)amino)pent-2-enoate (Table 2, entry 2)

The general procedure was followed using carbamate **2b** (71.5 mg, 0.394 mmol), propargyl ester **6** (75.6 mg, 0.6 mmol), and catalyst **3e** (6.2 mg, 3 mol%) in Et₂O (4 mL). After stirring at 0 °C for 15 hours, the product (**4b**) was obtained as a colorless oil (111.1 mg, 92% yield). The enantiomeric excess was determined to be 92% by chiral SFC ((*S*,*S*)-Whelk-O, 5% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. t_R (minor): 4.93 min, t_R (major): 5.59 min). [α]^D = -26.9° (c = 0.9, CHCl₃); IR (thin film): 2981, 2940, 1713, 1658, 1455, 1389, 1268, 1182, 1063, 1033 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.30 (5H, m), 6.95 (1H, dd, *J* = 15.8, 6.0 Hz), 5.91 (1H, dd, *J* = 15.8, 1.6 Hz), 5.22 (1H, AB, *J* = 12.1 Hz), 4.78 (1H, qdd, *J*^q = 6.9 Hz, *J*^d = 6.0, 1.6 Hz), 4.19 (2H, q, *J* = 7.1 Hz), 3.73 (3H, s), 1.38 (3H, d, *J* = 6.9 Hz), 1.28 (3H, t, *J* = 7.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 157.5, 146.0, 136.0, 128.8, 128.5, 128.3, 122.6, 68.1, 64.8, 60.7, 56.3, 16.4, 14.4; HRMS (TOF-ESI) calc'd for C₁₆H₂₁NO₅Na [M+Na]⁺ 330.1312; found: 330.1312.

(S, E)- ethyl 4-((allyloxycarbonyl)(methoxy)amino)dec-2-enoate (Table 2, entry 3)

The general procedure was followed using carbamate 2c (26.6 mg, 0.203 mmol),

propargyl ester (58.9 mg, 0.3 mmol), and catalyst **3e** (3.1 mg, 3 mol%) in Et₂O (2 mL). After maintaining the reaction with stirring at 0 °C for 22 hours, the product was obtained as a colorless oil (62.6 mg, 94% yield). The enantiomeric excess was determined to be 96% by chiral SFC ((*S*,*S*)-Whelk-O, 2% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. t_R (minor): 6.14 min, t_R (major): 6.56 min). [α]^D = -15.9° (c = 0.9, CHCl₃); IR (thin film): 2932, 1716, 1716, 1461, 1369, 1305, 1264, 1179, 1035 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.92 (1H, dd, *J* = 15.8, 7.0 Hz), 5.95 (1H, ddt, *J*^d = 17.2, 10.4 Hz, *J*^t = 5.6 Hz), 5.94 (1H, dd, *J* = 16.0, 1.0 Hz), 5.34 (1H, dq, *J*^d = 17.2 Hz, *J*^q = 1.5 Hz), 5.25 (1H, dq, *J*^d = 10.4 Hz, *J*^q = 1.2 Hz), 4.69–4.64 (2H, m), 4.56 (1H, tdd, *J*^t = 7.7 Hz, *J*^d = 6.7, 1.0 Hz), 4.19 (2H, q, *J* = 7.1 Hz), 3.75 (3H, s), 3.53 (2H, t, *J* = 6.9 Hz), 1.83 (1H, dddd, *J* = 13.5, 9.1, 8.2, 5.3 Hz), 1.66 (1H, dddd, *J* = 13.5, 9.4, 7.0, 5.3 Hz), 1.37–1.27 (11H, m), 0.88 (3H, t, *J* = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 157.5, 145.1, 132.3, 123.2, 118.5, 67.0, 64.5, 61.0, 60.7, 31.8, 31.1, 29.2, 26.3, 22.8, 14.4, 14.2; HRMS (TOF-ESI) calc'd for C₁₇H₂₉NO₅Na [M+Na]⁺ 350.1938; found: 350.1939.

(S, E)- ethyl 4-((allyloxycarbonyl)(methoxy)amino)-8-chlorooct-2-enoate (Table 2, entry4)

The general procedure was followed using carbamate **2c** (26.6 mg, 0.203 mmol), propargyl ester (60.8 mg, 0.3 mmol), and catalyst **3e** (3.1 mg, 3 mol%) in Et₂O (2 mL). After maintaining the reaction with stirring at 0 °C for 22 hours, the product was obtained as a colorless oil (64.1 mg, 95% yield). The enantiomeric excess was determined to be 96% by chiral SFC ((*S*,*S*)-Whelk-O, 2% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. $t_{\rm R}$ (minor): 7.39 min, $t_{\rm R}$ (major): 8.15 min). [α]^D = -16.7° (c = 1.0, CHCl₃); IR (thin film): 2939, 1714, 1667, 1267, 1182, 1093, 1038 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.92 (1H, dd, *J* = 15.8, 7.0 Hz), 5.95 (1H, ddt, *J*^d = 17.2, 10.4 Hz, *J*^t = 5.6 Hz), 5.95 (1H, dd, *J* = 15.8, 1.2 Hz), 5.35 (1H, dq, *J*^d = 17.2 Hz, *J*^q = 1.5 Hz), 5.26 (1H, dq, *J*^d = 10.4 Hz, *J*^q = 1.2 Hz), 4.70–4.64 (2H, m), 4.58 (1H, tdd, *J*^t = 7.7 Hz, *J*^d = 6.6, 1.0 Hz), 4.19 (2H, q, *J* = 7.1 Hz), 3.75 (3H, s), 3.53 (2H, t, *J* = 6.9 Hz), 1.90–1.75 (3H, m), 1.72–1.66 (1H, m), 1.55–1.45 (2H, m), 1.29 (3H, t, *J* = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 157.5,

144.5, 132.2, 123.5, 118.6, 67.0, 64.5, 60.7, 60.7, 44.7, 32.3, 30.3, 23.6, 14.4; HRMS (TOF-ESI) calc'd for C₁₅H₂₄ClNO₅Na [M+Na]⁺ 356.1235; found: 356.1238.

(*S*,*E*)- ethyl 4-((allyloxycarbonyl)(methoxy)amino)oct-2-en-7-ynoate (Table 2, entry 5)

The general procedure was followed using carbamate **2c** (39.3 mg, 0.30 mmol), propargyl ester (73.9 mg, 0.45 mmol), and catalyst **3e** (3.1 mg, 2 mol%) in Et₂O (3 mL). After maintaining the reaction with stirring at 0 °C for 12 hours, the product was obtained as a colorless oil (74.8 mg, 85% yield). The enantiomeric excess was determined to be 96% by chiral SFC ((*S*,*S*)-Whelk-O, 2% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. $t_{\rm R}$ (minor): 5.11 min, $t_{\rm R}$ (major): 5.77 min). [α]^D = -4.4° (c = 1.0, CHCl₃); IR (thin film): 3292, 2940, 2119, 1714, 1369, 1267, 1161, 1092, 1030 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.91 (1H, dd, *J* = 15.8, 7.3 Hz), 5.99 (1H, dd, *J* = 15.8, 1.2 Hz), 5.94 (1H, ddt, *J*^d = 17.2, 10.4 Hz, *J*^t = 5.6 Hz), 5.35 (1H, dq, *J*^d = 17.2 Hz, *J*^q = 1.5 Hz), 5.26 (1H, dq, *J*^d = 10.4 Hz, *J*^q = 1.3 Hz), 4.75 (1H, dtd, *J*^t = 7.0 Hz, *J*^d = 8.2, 1.2 Hz), 4.70–4.64 (2H, m), 4.19 (2H, q, *J* = 7.1 Hz), 3.76 (3H, s), 2.36–2.23 (2H, m), 2.09 (1H, ddt, *J*^d = 13.8, 8.5 Hz, *J*^t = 7.0 Hz), 2.01 (1H, ddt, *J* = 2.6 Hz), 1.91 (1H, dtd, *J*^d = 13.8, 6.5 Hz, *J*^t = 7.3 Hz), 1.29 (3H, t, *J* = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 157.4, 143.8, 132.1, 123.9, 118.6, 82.8, 69.8, 67.1, 64.5, 60.7, 60.0, 29.9, 15.6, 14.4; HRMS (TOF-ESI) calc'd for C₁₅H₂₁NO₅Na [M+Na]⁺ 318.1312; found: 318.1315.

(S, E)-ethyl 4-((allyloxycarbonyl)(methoxy)amino)dec-2-en-9-ynoate (Table 2, entry 6)

The general procedure was followed using carbamate 2c (39.0 mg, 0.298 mmol), propargyl ester (86.5 mg, 0.45 mmol), and catalyst 3e (4.7 mg, 3 mol%) in Et₂O (3 mL). After maintaining the reaction with stirring at 0 °C for 36 hours, the product was obtained as a colorless oil (92.0 mg, 96% yield). The enantiomeric excess was determined to be 95% by chiral SFC ((*S*,*S*)-Whelk-O, 2% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. $t_{\rm R}$ (minor): 6.73 min, $t_{\rm R}$ (major): 7.31 min). [α]^D = -16.2° (c = 0.8, CHCl₃); IR (thin film): 3293, 2940, 2117, 1713, 1657, 1369, 1265, 1183 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.92 (1H, dd, *J* = 16.0, 7.2 Hz), 5.95 (1H, dd, *J* = 16.1, 1.2 Hz), 5.95 (1H, ddt, *J*^d = 17.2, 10.4 Hz, *J*^t = 5.6 Hz), 5.35 (1H, dq, *J*^d = 17.2 Hz, *J*^q = 1.5 Hz), 5.26 (1H, dq, *J*^d = 10.4 Hz, *J*^q = 1.3 Hz), 4.70–4.64 (2H, m), 4.58 (1H, dt, *J*^d = 8.0 Hz, *J*^t = 7.0 Hz), 4.19 (2H, q, *J* = 7.1 Hz), 3.75 (3H, s), 2.20 (2H, td, *J*^t = 7.0 Hz, *J*^d = 2.6 Hz), 1.94 (1H, t, *J* = 2.6 Hz), 1.85 (1H, dddd, *J* = 13.8, 10.0, 8.5, 5.6 Hz), 1.69 (1H, ddt, *J*^d = 13.8, 10.0 Hz, *J*^t = 6.2 Hz), 1.61–1.43 (4H, m), 1.29 (3H, t, *J* = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 157.5, 144.7, 132.2, 123.4, 118.6, 84.2, 68.8, 67.0, 64.5, 60.8, 60.7, 30.5, 28.2, 25.4, 18.4, 14.4; HRMS (TOF-ESI) calc'd for C₁₇H₂₅NO₅Na [M+Na]⁺ 346.1625; found: 346.1628.

(*S*, *E*)- ethyl 4-((allyloxycarbonyl)(methoxy)amino)-5-methoxypent-2-enoate (Table 2, entry 7)

The general procedure was followed using carbamate **2c** (39.2 mg, 0.30 mmol), propargyl ester (70.3 mg, 0.45 mmol), and catalyst **3e** (7.8 mg, 5 mol%) in Et₂O (3 mL). After maintaining the reaction with stirring at 0 °C for 36 hours, the product was obtained as a colorless oil (62.6 mg, 94% yield). The enantiomeric excess was determined to be 92% by chiral SFC ((*S*,S)-Whelk-O, 1.5% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. t_R (minor): 12.17 min, t_R (major): 13.11 min). [α]^D = -10.7° (c = 1.0, CHCl₃); IR (thin film): 2983, 2937, 1715, 1659, 1448, 1369, 1309, 1266, 1180, 1033 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.87 (1H, dd, *J* = 16.1, 6.4 Hz), 6.01 (1H, dd, *J* = 16.1, 1.5 Hz), 5.94 (1H, ddt, *J*^d = 17.2, 10.4 Hz, *J*^d = 5.6 Hz), 5.35 (1H, dq, *J*^d = 17.2 Hz, *J*^q = 1.5 Hz), 5.25 (1H, dq, *J*^d = 10.4 Hz, *J*^q = 1.2 Hz), 4.89 (1H, dddd, *J* = 8.8, 6.4, 5.6, 1.5 Hz), 4.70–4.64 (2H, m), 4.19 (2H, q, *J* = 7.1 Hz), 3.77 (3H, s), 3.74 (1H, dd, *J* = 10.0, 8.8 Hz), 3.49 (1H, dd, *J* = 10.0, 5.6 Hz), 3.38 (3H, s), 1.28 (3H, t, *J* = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 157.6, 141.7, 132.2, 124.5, 118.5, 70.7, 67.1, 64.3, 60.8, 60.0, 59.1, 14.4; HRMS (TOF-ESI) calc'd for C₁₃H₂₁NO₆Na [M+Na]⁺ 310.1261; found: 310.1261.

(*S*, *E*)- ethyl 4-((allyloxycarbonyl)(methoxy)amino)-6-(tert-butyldimethylsilyloxy)hex-2enoate (Table 2, entry 8)

The general procedure was followed using carbamate 2c (26.1 mg, 0.20 mmol), propargyl ester (81.1 mg, 0.30 mmol), and catalyst **3e** (5.2 mg, 5 mol%) in Et₂O (2 mL). After maintaining the reaction with stirring at 0 °C for 13 hours, the product was obtained as a colorless oil (63.0 mg, 79% yield). The enantiomeric excess was determined to be 97% by chiral SFC ((S,S)-Whelk-O, 2% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. $t_{\rm R}$ (minor): 6.01 min, $t_{\rm R}$ (major): 6.89 min). $[\alpha]^{\rm D} = -2.9^{\circ}$ (c = 0.9, CHCl₃); IR (thin film): 2931. 1719, 1369, 1256, 1166, 1095 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.93 (1H, dd, J = 16.0, 7.2 Hz), 5.95 (1H, dd, J = 15.8, 1.5 Hz), 5.93 (1H, ddt, J^{d} = 17.2, 10.4 Hz, J^{t} = 5.6 Hz), 5.34 (1H, dq, $J^{d} = 17.2$ Hz, $J^{q} = 1.5$ Hz), 5.25 (1H, dq, $J^{d} = 10.4$ Hz, $J^{q} = 1.3$ Hz), 4.82 (1H, tdd, $J^{t} = 7.7$ Hz, $J^{d} = 6.6$, 1.3 Hz), 4.69–4.62 (2H, m), 4.19 (2H, q, J = 7.1 Hz), 3.75 (3H, s), 3.70 (1H, ddd, J = 10.4, 7.0, 5.1 Hz), 3.63 (1H, ddd, J = 10.4, 7.0, 5.0 Hz),2.06 (1H, dddd, J = 13.8, 7.9, 6.4, 5.3 Hz), 1.88 (1H, dddd, J = 13.8, 7.0, 6.7, 5.3 Hz), 1.28 (3H, t, J = 7.2 Hz), 0.89 (9H, s), 0.04 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 157.4, 144.7, 132.3, 123.4, 118.5, 67.0, 64.3, 60.7, 59.4, 58.1, 34.2, 26.1, 18.4, 14.4, -5.23, -5.24; HRMS (TOF-ESI) calc'd for C₁₉H₃₅NO₆SiNa [M+Na]⁺ 424.2126; found: 424.2129.

(*S*, *E*)-ethyl 4-((allyloxycarbonyl)(methoxy)amino)-6-methylhept-2-enoate (Table 2, entry 9)

The general procedure was followed using carbamate 2c (13.2 mg, 0.101 mmol), propargyl ester (25.2 mg, 0.15 mmol), and catalyst 3e (5.2 mg, 10 mol%) in Et₂O (1 mL). After maintaining the reaction with stirring at 0 °C for 21 hours, the product was obtained as a colorless oil (26.3 mg, 87% yield). The enantiomeric excess was determined to be 98% by chiral HPLC (ChiralCel OD-H, 5% IPA in hexanes, 1 mL/min, 23 °C, 210 nm. $t_{\rm R}$ (major): 5.52 min, $t_{\rm R}$ (minor): 6.57 min). [α]^D = -22.0° (c = 0.8, CHCl₃); IR (thin film): 2960, 2872, 1720, 1654, 1466, 1387, 1369, 1306, 1267, 1180, 1134, 1083, 1038 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.91 (1H, dd, J = 15.8, 7.0 Hz), 5.94 (1H, ddt, $J^{\rm d}$ = 17.2, 10.4 Hz, $J^{\rm t}$ = 5.6 Hz), 5.94 (1H, dd, J = 16.0, 1.0 Hz), 5.34 (1H, dq, $J^{\rm d}$ = 17.2 Hz, $J^{\rm q}$ = 1.5 Hz), 5.25 (1H, dq, $J^{\rm d}$ = 10.4 Hz, $J^{\rm q}$ = 1.2 Hz), 4.69–4.63 (3H, m), 4.18 (2H, q, J = 7.1 Hz), 3.74 (3H, s), 1.74 (1H, ddd, J = 13.7, 8.4, 6.4 Hz), 1.64 (1H, nonet, J = 6.6 Hz), 1.50 (1H, dt, $J^{\rm d}$ = 13.7 Hz, $J^{\rm t}$ = 7.1 Hz), 1.28 (3H, t, J = 7.0 Hz), 0.94 (3H, d, J = 6.7 Hz), 0.93 (3H, d, J = 6.4 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 157.5, 145.2, 132.3, 123.2, 118.5, 67.0, 64.5, 60.7, 59.2, 34.0, 24.8, 22.7, 22.6, 14.4; HRMS (TOF-ESI) calc'd for C₁₅H₂₅NO₅Na [M+Na]⁺ 322.1625; found: 322.1627.

(*S*,*E*)-ethyl 4-((allyloxycarbonyl)(methoxy)amino)-6-(1,3-dioxoisoindolin-2-yl)hex-2enoate (Table 2, entry 10)

An oven-dried 2-dram vial was charged with catalyst **3e** (7.8 mg, 7.5 mol%) and solid propargyl ester (85.6 mg, 0.3 mmol) and capped with a Teflon septum. After three cycles of evacuation and backfilling with nitrogen, dry CH₂Cl₂ (2 mL) was added to the vial via syringe. The resulting solution was cooled to 0 °C and carbamate **2c** (26.1 mg, 0.2 mmol) was added. The sealed vial was maintained with stirring at 0 °C (ice bath) for 48 hours until TLC analysis showed complete consumption of the carbamate starting material. Following removal of the solvent under reduced pressure, the crude residue was purified by silica gel column chromatography (20% \rightarrow 25% EtOAc in hexanes) to give the product as a colorless oil (72.5 mg, 87% yield). The enantiomeric excess was determined to be 96% by chiral SFC (ChiralPak AD-H, 5% methanol in CO₂, 3 mL/min, 30 °C, 215 nm. t_R (major): 3.81 min, t_R (major): 4.75 min). [α]^D = -5.5° (c = 0.8, CHCl₃); IR (thin film): 2940, 2255, 1773, 1707, 1656, 1438, 1370, 1306, 1265, 1184, 1072, 1037 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.86–7.83 (2H, m), 7.74–7.71 (2H, m), 6.90 (1H, dd, *J* = 15.8, 7.0 Hz), 6.01 (1H, dd, J = 15.8, 1.2 Hz), 5.92 (1H, ddt, $J^{d} = 17.2$, 10.4 Hz, $J^{t} = 5.6$ Hz), 5.33 (1H, dq, $J^{d} = 17.2$ Hz, $J^{q} = 1.5$ Hz), 5.24 (1H, dq, $J^{d} = 10.4$ Hz, $J^{q} = 1.3$ Hz), 4.69–4.42 (3H, m), 4.17 (2H, q, J = 7.1 Hz), 3.85 (3H, s), 3.84–3.76 (2H, m), 2.20 (1H, dddd, J = 13.8, 8.8, 8.5, 6.4 Hz), 1.88 (1H, dddd, J = 13.8, 8.5, 6.7, 6.2 Hz), 1.27 (3H, t, J = 7.3 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 166.0, 157.6, 143.4, 134.2, 132.2, 132.1, 124.0, 123.4, 118.6, 67.2, 64.6, 60.7, 58.9, 35.4, 29.9, 14.3; HRMS (TOF-ESI) calc'd for C₂₁H₂₄N₂O₇Na [M+Na]⁺ 439.1476; found: 439.1474.

(*S*, *E*)-ethyl 4-((allyloxycarbonyl)(methoxy)amino)-7-cyanohept-2-enoate (Table 2, entry 11)

The general procedure was followed using carbamate **2c** (39.7 mg, 0.30 mmol), propargyl ester (80.6 mg, 0.45 mmol), and catalyst **3e** (7.8 mg, 5 mol%) in Et₂O (3 mL). After maintaining the reaction with stirring at 0 °C for 44 hours, the product was obtained as a colorless oil (84.5 mg, 79% yield). The enantiomeric excess was determined to be 99% by chiral SFC ((*S*,*S*)-Whelk-O, 5% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. t_R (minor): 5.25 min, t_R (major): 5.76 min). [α]^D = -18.3° (c = 0.8, CHCl₃); IR (thin film): 2940, 2250, 1714, 1658, 1446, 1370, 1309, 1270, 1189, 1094, 1038 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.91 (1H, dd, *J* = 15.8, 6.4 Hz), 5.98 (1H, dd, *J* = 16.1, 1.0 Hz), 5.95 (1H, ddt, *J*^d = 17.2, 10.4 Hz, *J*^t = 5.6 Hz), 5.36 (1H, dq, *J*^d = 17.2 Hz, *J*^q = 1.5 Hz), 5.28 (1H, dq, *J*^d = 10.4 Hz, *J*^q = 1.3 Hz), 4.70–4.65 (2H, m), 4.62 (1H, q, *J* = 7.2 Hz), 4.20 (2H, q, *J* = 7.1 Hz), 3.76 (3H, s), 2.40 (2H, t, *J* = 6.9 Hz), 2.06–2.00 (1H, m), 1.85–1.67 (3H, m), 1.29 (3H, t, *J* = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 157.4, 143.7, 132.0, 124.0, 119.2, 118.8, 67.2, 64.6, 60.8, 59.9, 29.9, 22.3, 17.1, 14.3; HRMS (TOF-ESI) calc'd for C₁₅H₂₂N₂O₅Na [M+Na]⁺ 333.1421; found: 333.1421.

2.4 N-Methoxy Cleavage:

(S, E)- Ethyl 4-(allyloxycarbonylamino)pent-2-enoate

To a suspension of TiCl₃ in THF (5 mL) was added a solution of N-methoxycarbamate 4c (1.15 g, 4.47 mmol) and H₂O (0.241 mL, 13.4 mmol) in THF (10 mL) via cannula. Another portion of THF (7 mL) was used to rinse the flask containing carbamate 4c into the TiCl₃ flask. The reaction mixture was heated to 50 °C and maintained at that temperature for 5 hours before cooling to room temperature. The reaction was quenched by pouring it into a stirring saturated NaHCO₃ solution (100 mL). After maintaining with stirring at room temperature for 30 minutes, Celite (5 g) was added and the mixture was filtered through a Celite pad. The black filter cake was washed with Et₂O thoroughly and the filtrate was extracted with Et₂O (3×50 mL). The combined organic extracts were dried over MgSO₄ and purified by silica gel column chromatography (20% EtOAc in hexanes) to give the product as a colorless oil (0.945 g, 93% yield). The enantiomeric excess was determined to be 94% by chiral SFC (ChiralPak AS-H, 2% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. $t_{\rm R}$ (minor): 2.17 min, $t_{\rm R}$ (major): 2.91 min). $[\alpha]^{\rm D} = -32.5^{\circ}$ (c = 1.0, CHCl₃); IR (thin film): 3331, 2979, 2924, 1696, 1658, 1524, 1453, 1369, 1307, 1237, 1180, 1044 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.87 (1H, dd, J = 15.8, 5.0 Hz), 5.91 (1H, dd, J = 15.8, 1.2 Hz), 5.91 (1H, ddt, $J^{d} = 17.2$, 10.4 Hz, $J^{t} = 5.9$ Hz), 5.30 (1H, d, J =17.3 Hz), 5.22 (1H, dq, J^{d} = 10.3 Hz, J^{q} = 1.2 Hz), 4.74 (1H, br), 4.59–4.54 (2H, m), 4.46 (1H, br), 4.19 (2H, q, J = 7.1 Hz), 1.30 (3H, d, J = 6.4 Hz), 1.28 (3H, t, J = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 155.5, 148.9, 132.9, 120.7, 118.1, 66.0, 60.7, 47.7, 20.5, 14.4; HRMS (TOF-ESI) calc'd for $C_{11}H_{17}NO_4Na [M+Na]^+$ 250.1050; found: 250.1046.

2.5 N-Alloc Cleavage and Absolute Stereochemistry Determination

(S, E)- Ethyl 4-(benzyloxycarbonylamino)pent-2-enoate

To a solution of the carbamate (162.7 mg, 0.716 mmol) and PhSiH₃ (0.44 mL, 3.58 mmol) in CH₂Cl₂ (4 mL) was added Pd(PPh₃)₄ (0.072 mmol, 84 mg). After maintaining the resulting reaction with stirring for 10 minutes, the mixture was diluted with CH_2Cl_2 (6) mL) and 1:1 NaHCO₃/Na₂CO₃ buffer (1 M, 3 mL, 3 mmol) and cooled to 0 °C. CbzCl (121 µL, 0.86 mmol) was added and the mixture was stirred at 0 °C for another 1 hour and then at room temperature for 0.5 hours. The reaction mixture was then extracted with CH₂Cl₂ (2 \times 20 mL) and the combined organic extracts were dried over MgSO₄. The product was further purified using silica gel column chromatography to give the carbamate product as a colorless oil (192.5 mg, 97% yield). The enantiomeric excess was determined to be 94% by chiral SFC (ChiralCel OD-H, 5% methanol in CO₂, 3 mL/min, 30 °C, 210 nm. $t_{\rm R}$ (minor): 5.04 min, $t_{\rm R}$ (major): 5.76 min). $[\alpha]^{\rm D} = -15.8 \circ (c = 10.5)$ 1.0, CHCl₃) for 94% ee sample (Lit: $[\alpha]^{D} = -13.4 \circ (c = 0.95, CHCl_{3})$ for an 88% ee sample of S configuration product¹); IR (thin film): 3296, 2979, 1716, 1684, 1656, 1537, 1455, 1290, 1252, 1161, 1077, 1025 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.30 (5H, m), 6.87 (1H, dd, J = 15.8, 5.0 Hz), 5.91 (1H, d, J = 15.3 Hz), 5.12 (1H, AB, J = 12.1Hz), 5.08 (1H, AB, J = 12.1 Hz), 4.78 (1H, br), 4.47 (1H, br), 4.19 (2H, q, J = 7.2 Hz), 1.29 (3H, d, J = 7.1 Hz), 1.28 (3H, t, J = 7.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 155.6, 148.9, 136.5, 128.8, 128.4, 128.4, 120.7, 67.2, 60.7, 47.8, 20.5, 14.4.

¹ Tsubaki, K.; Kusumoto, T.; Hayashi, N.; Tanima, D.; Fuji, K.; Kawabata, T. *Tetrahedron Asymm.* 2005, 16, 739.

² Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 9328.

³ Kawase, M.; Kitamura, T.; Kikugawa, Y. J. Org. Chem. 1989, 54, 3394.

⁴ Griffith, B. R.; Krepel, C.; Fu, X.; Blanchard, S.; Ahmed, A.; Edmiston, C. E.; Thorson, J. S. J. Am. Chem. Soc. 2007, 129, 8150.

⁵ Lang, R. W.; Hansen, H.-J. Org. Synth. 1984, 62, 202; Org. Synth. Coll. Vol. 1990, 7, 232.

⁶ Obata, R.; Sunazuka, T.; Li, Z.; Tian, Z.; Harigaya, Y.; Tabata, N.; Tomoda, H.; Omura, S. *J. Antibiot.* **1996**, *49*, 1133.

⁷ Suárez, A.; Fu, G. C. Angew. Chem., Int. Ed. 2004, 43, 3580.

ppn

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	3.10	3.41	3.69	0.00	96.73	852.9	106.4	96.731
2	UNKNOWN	3.69	3.82	3.98	0.00	3.27	28.8	3.6	3.269
Total						100.00	881.7	109.9	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	4.56	4.97	5.22	0.00	49.99	296.9	48.4	49.989
2	UNKNOWN	5.22	5.65	5.95	0.00	50.01	265.7	48.5	50.011
Total						100.00	562.6	96.9	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	4.49	4.93	5.09	0.00	3.78	43.3	7.3	3.784
2	UNKNOWN	5.09	5.59	6.12	0.00	96.22	951.0	184.5	96.216
Total						100.00	994.3	191.7	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	6.10	6.33	6.33	0.00	0.79	7.3	0.7	0.794
2	UNKNOWN	6.33	6.75	7.17	0.00	99.21	371.9	87.0	99.206
T									
Total			L			100.00	379.2	87.7	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	5.41	6.01	6.39	0.00	97.88	365.5	78.8	97.883
2	UNKNOWN	6.39	6.58	6.75	0.00	2.12	8.5	1.7	2.117
Total						100.00	374.0	80.5	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area	
		[Min]	[Min]	[Min]	[Min]	[% Area]	[V4]	[µV.Min]	[%]	
1	UNKNOWN	6.98	7.39	7.57	0.00	1.83	6.5	1.7	1.825	
2	UNKNOWN	7.57	8.15	8.86	0.00	98.17	336.8	91.4	98.175	
Total						100.00	343.3	93.1	100.000	

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area	
		[Min]	[Min]	[Min]	[Min]	[% Area]	[Vu]	[µV.Min]	[%]	
1	UNKNOWN	6.63	7.36	7.90	0.00	97.77	371.1	91.7	97.773	
2	UNKNOWN	7.90	8.27	8.45	0.00	2.23	6.6	2.1	2.227	
Total						100.00	377.8	93.8	100.000	

۹(٬

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	4.87	5.37	5.75	0.00	97.81	498.4	94.1	97.809
2	UNKNOWN	5.77	6.10	6.37	0.00	2.19	10.3	2.1	2.191
Total						100.00	508.7	96.2	100.000

96%

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	6.02	6.66	7.02	0.00	97.50	241.2	54.8	97.496
2	UNKNOWN	7.02	7.32	7.68	0.00	2.50	5.6	1.4	2.504
Total						100.00	246.7	56.2	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	11.06	12.05	12.43	0.00	51.42	146.2	56.3	51.421
2	UNKNOWN	12.43	13.05	13.71	0.00	48.58	125.0	53.2	48.579
Total						100.00	271.2	109.4	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	11.70	12.17	12.40	0.00	4.19	7.6	2.7	4.186
2	UNKNOWN	12.40	13.11	13.71	0.00	95.81	151.4	61.6	95.814
Total						100.00	159.0	64.3	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	5.43	6.00	6.42	0.00	98.32	393.3	87.5	98.317
2	UNKNOWN	6.70	6.95	7.14	0.00	1.68	7.2	1.5	1.683
Total						100.00	400.5	89.0	100,000

DA Ch2 25	4nm 4nm		PeakTable						
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	4.518	280280	40993	98.971	99.464				
2	6.565	2913	221	1.029	0.536				
Total		283193	41214	100.000	100.000				

PDA Ch2 254nm 4nm PeakTable								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	4.501	3560	567	1.888	3.192			
2	6.542	185034	17189	98.112	96.808			
Total		188594	17756	100.000	100.000			

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	3.43	3.68	3.96	0.00	49.92	374.9	74.2	49.921
2	UNKNOWN	3.96	4.29	4.85	0.00	50.08	229.3	74.4	50.079
lotal		_				100.00	604.2	148.6	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	3.33	3.81	4.29	0.00	97.84	1913.1	407.3	97.837
2	UNKNOWN	4.29	4.75	5.16	0.00	2.16	17.0	9.0	2.163
Total						100.00	1930.1	416.3	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	4.80	5.30	5.64	0.00	96.87	406.3	72.3	96.870
2	UNKNOWN	5.64	5.85	6.04	0.00	3.13	12.6	2.3	3,130
Total						100.00	418.9	74.6	100.000

