Supporting Information for "Field Measurement on the Emissions of PM, EC, OC, Parent, Nitro- and Oxy- Polycyclic Aromatic Hydrocarbons from Residential Briquette, Coal Cake, and Wood Combustions in Rural Shanxi, China"

Guofeng SHEN^{1,2}, Shu TAO^{1*}, Siye WEI¹, Yuanchen CHEN¹, Yanyan ZHANG¹, Huizhong SHEN¹, Ye HUANG¹, Dan ZHU¹, Chenyi YUAN¹, Haochen WANG³, Yafei Wang³, Lijun PEI³, YiLan LIAO³, Yonghong DUAN⁴, Bin WANG¹, Rong WANG¹, Yan Lv¹, Wei LI¹, Xilong WANG¹

- 1. Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- 2. Institute of Atmospheric Sciences, Jiangsu Academy of Environmental Sciences, Nanjing, 210036, China
- 3. Institute of Population Research, Peking University, Beijing 100871, China
- 4. College of Resources and Environment, Shanxi Agricultural University, Shanxi, 030800, China

* Corresponding author phone and fax: 0086-10-62751938, email: taos@pku.edu.cn

There are 5 tables and 2 figures

Figure S1. Pictures of the fuel and stove tested in this study. Three different fuel/stove combinations were inventigated: wood burned in a simple metal stove, honmeycomb briquette burned in an improved metallic stove with a chimney, and coal cake burned in a brick stove with a outdoor flue pipe (from left to the right).

	Briquette	Coal cake	Wood
Moisture	1.5	2.1	5.4
Volatile matter	11	6.1	83
Ash	47	87	1.0
Fixed carbon	42	6.8	16

Table S1. Fuel moisture (%, wet basis) and proximate analysis (%, dry basis) for briquette, coalcake and wood investigatedin this study.

The temperature protocol used in EC/OC analysis is listed in **Table S2**. The protocol used here was a modified one similar to the National Institute of Occupational Safety and Health (NIOSH) 5040, as recommended by the manufacturer. Briefly, it was increased to 600 (90 s), $840 \,^{\circ}\text{C}$ (90 s) in a pure helium atmosphere for OC detection, and then 550 (35 s), 650 (45 s) and $870 (90 \text{ s}) \,^{\circ}\text{C}$ in an oxygen/helium atmosphere for EC detection.

 Table S2. EC/OC analysis temperature protocol (rtquartz.par) in this study using a Sunset analyzer (RT-4)

Mode	Time,	Temperature,	Power constant	Time constant,	Blower mode
	S	°C		s	
Helium	10	1	0.001	95	0
Helium	90	600	20	40	0
Helium	90	840	32	22	0
Helium	35	0	0.001	95	16
Helium	1	550	20	50	0
Oxygen	35	550	18	50	0
Oxygen	45	650	22	35	0
Oxygen	90	870	32	22	0

CalibrationOx	110	0	0.001	95	16
OFFLINE	1	0	0.001	95	16

Table S3. Instrumental detection limit (defined as 3 times signal-to-noise ratio), method detection limit (defined as 3.14 times the standard deviation of 7 replicated analyses of spiked samples) and recoveries of individual parent PAHs, oxy- and nitro-PAHs.

	IDI	MI	DL , ng/mL	Recovery		
	IDL, ng	gaseous	particle phase	gaseous	particle phase	
Parent-PAHs						
naphthalene (NAP)	0.40	0.99	0.32	0.70	0.74	
acenaphthylene (ACY)	0.13	0.63	0.24	0.83	0.68	
acenaphthene (ACE)	0.43	0.49	0.31	0.73	0.71	
fluorene (FLO)	0.76	0.64	0.25	0.95	0.83	
phenanthrene (PHE)	0.78	0.53	1.18	0.89	0.73	
anthracene (ANT)	0.48	0.84	0.50	1.01	0.77	
fluoranthene (FLA)	0.31	1.26	0.91	1.14	0.78	
pyrene (PYR)	0.38	1.26	0.95	1.21	0.80	
retene (RET)	0.31	0.74	0.40	1.04	0.85	
benzo[c]phenanthrene (BcP)	0.35	0.88	0.54	0.89	0.90	
cyclopenta[c,d]pyrene (CPP)	0.40	0.90	0.50	0.92	0.90	
benzo(a)anthracene (BaA)	0.35	0.97	0.67	0.85	0.85	
chrysene (CHR)	0.41	1.06	0.77	0.90	0.98	
benzo(b)fluoranthene (BbF)	0.30	0.91	1.20	0.80	1.21	
benzo(k)fluoranthene (BkF)	0.48	1.71	1.23	1.08	0.99	
benzo(a)pyrene (BaP)	0.47	1.43	1.03	1.01	0.80	
benzo(e)pyrene (BeP)	0.47	1.43	1.02	0.95	0.80	
perylene (PER)	0.23	0.68	1.02	0.94	0.79	
indeno(1,2,3-cd)pyrene (IcdP)	0.31	0.82	1.05	0.72	1.20	
dibenz(a,h)anthracene (DahA)	0.93	1.28	0.98	0.83	1.03	
benzo(g,h,i)perylene (BghiP)	0.93	1.32	1.42	0.90	0.97	
dibenzo[a,c]pyrene (DacP)	0.90	1.10	1.30	0.80	0.96	
dibenzo[a,l]pyrene (DalP)	0.84	1.01	0.92	0.75	0.99	
dibenzo[a,e]flluoranthene (DaeF)	0.85	1.00	1.02	0.78	1.05	
Coronene(COR)	0.78	0.99	1.04	0.98	0.98	
dibenzo[a,e]pyrene (DaeP)	0.89	1.33	1.25	0.86	1.35	
dibenzo[a,i]pyrene (DaiP)	0.92	1.03	1.10	0.88	1.00	
dibenzo[a,h]pyrene (DahP)	0.90	1.05	1.08	0.90	0.98	
Oxy-PAHs						
9-fluorenone (9FO)	0.06	0.43	0.08	0.72	0.53	
anthracene-9,10-dione (ATQ)	0.24	0.84	0.30	0.96	0.81	
benzanthrone (BZO)	0.13	0.54	0.44	0.84	0.87	
benzo[a]anthracene-dione(BaAQ)	0.12	0.59	0.24	0.80	0.71	
Nitro-PAHs						
1-nitro-naphthalene (1N-NAP)	0.12	0.44	0.67	0.72	0.83	

2-nitro-naphthalene (2N-NAP)	0.24	0.57	0.71	0.83	0.84
5-nitro-acenaohthene (5N-ACE)	0.12	0.58	0.75	0.77	0.88
2-nitro-fluorene (2N-FLO)	0.24	0.64	0.75	0.83	0.90
9-nitro-anthracene (9N-ANT)	0.12	0.56	0.64	0.68	0.76
9-nitro-phenanthrene (9N-PHE)	0.12	0.56	0.73	0.71	0.86
3-nitro-phenanthrene (3N-PHE)	0.13	0.71	0.74	0.79	0.90
3-nitro-fluoranthene (3N-FLA)	0.24	0.75	0.74	0.82	0.87
1-nitro-pyrene (1N-PYR)	0.12	0.67	0.82	0.78	0.83

Table S4. EFs (mg/kg) of individual parent PAHs, oxy- and nitro-PAHs from residential briquette, coal cake, and wood combustions. Data shown are the range from duplicate measurements.

	Briquette	Coal Cake	Wood
Parent-PAHs	Driquette	Courcase	wood
naphthalene (NAP)	2 2-3 2	18-87	9 3-172
acenaphthylene (ACY)	0 59-0 82	32-42	15-28
acenaphthene (ACE)	0.052-0.086	1 7-2 1	13-2.0
fluorene (FLO)	0 29-0 42	95-96	4 1-4 9
phenanthrene (PHF)	3.0-3.5	26-29	16-22
anthracene (ANT)	0 33-0 38	8 1-9 1	3 5-4 6
fluoranthene (FLA)	2.2-2.3	11-14	14-26
pyrene (PYR)	1 6-1 7	8 6-11	13-23
retene (RET)	0.058-0.11	0.70-0.85	0.88-8.1
benzo[c]phenanthrene (BcP)	0.14-0.16	0.99-1.5	1.0-1.9
cvclopenta[c.d]pvrene (CPP)	0.022-0.11	7.8-12	12-22
benzo(a)anthracene (BaA)	0.58-0.74	4.3-6.6	4.5-8.1
chrysene (CHR)	1.2-1.3	2.8-4.2	3.6-6.6
benzo(b)fluoranthene (BbF)	0.31-0.38	2.0-2.9	2.7-4.2
benzo(k)fluoranthene (BkF)	0.24-0.30	1.8-2.5	3.0-4.5
benzo(a)pyrene (BaP)	0.20-0.22	0.95-1.3	1.7-2.6
benzo(e)pyrene (BeP)	0.068-0.077	2.4-3.4	3.8-5.9
perylene (PER)	0.0094-0.0096	0.43-0.55	0.62-0.96
indeno(1,2,3-cd)pyrene (IcdP)	0.034-0.035	1.8-2.7	2.7-3.9
dibenz(a,h)anthracene (DahA)	0.018-0.019	0.19-0.32	0.33-0.39
benzo(g,h,i)perylene (BghiP)	0.033-0.034	0.86-1.3	1.9-2.7
dibenzo[a,c]pyrene (DacP)	0.0014-0.0018	0.67-0.67	0.78-1.5
dibenzo[a,l]pyrene (DalP)	0.0050-0.0067	0.41-0.58	0.36-0.55
dibenzo[a,e]flluoranthene (DaeF)	0.0022-0.0039	0.31-0.39	0.33-0.37
Coronene(COR)	0.0055-0.0066	0.75-1.2	2.2-2.6
dibenzo[a,e]pyrene (DaeP)	0.0084-0.012	0.23-0.39	0.16-0.39
dibenzo[a,i]pyrene (DaiP)	0.0014	0.27-0.47	0.22-0.45
dibenzo[a,h]pyrene (DahP)	n.d.*	0.048-0.067	0.053-0.097
Oxy-PAHs			
9-fluorenone (9FO)	1.1-1.8	3.4-4.1	2.9-4.1

anthracene-9,10-dione (ATQ)	0.50-0.68	0.69-1.5	1.5-2.0
benzanthrone (BZO)	0.077-0.16	0.65-3.8	3.44-3.89
benzo[a]anthracene-dione(BaAQ)	0.014-0.018	0.018-0.062	0.096-0.15
Nitro-PAHs			
1-nitro-naphthalene (1N-NAP)	0.00038-0.00049	0.0037-0.0041	0.0098-0.011
2-nitro-naphthalene (2N-NAP)	0.00071-0.0012	0.0043-0.0045	0.010-0.011
5-nitro-acenaohthene (5N-ACE)	0.00032-0.00062	0.0011-0.0033	0.0054-0.0070
2-nitro-fluorene (2N-FLO)	0.00063-0.00067	0.0012-0.0033	0.0047-0.0068
9-nitro-anthracene (9N-ANT)	0.47-0.59	0.13-2.1	0.04-0.33
9-nitro-phenanthrene (9N-PHE)	0.16-0.24	0.016-0.35	0.042-0.18
3-nitro-phenanthrene (3N-PHE)	0.00022-0.00025	0.00030-0.00088	0.0015-0.0020
3-nitro-fluoranthene (3N-FLA)	0.00073-0.00075	0.00057-0.0017	0.0052-0.010
1-nitro-pyrene (1N-PYR)	0.0011-0.0017	0.0030-0.0053	0.0059

*: n.d. not detected.

Figure S2. Normalized mass percentages of 4 oxygenated and 9 nitro PAHs (gaseous and particle-phase combined) for the wood, coal cake and coal briquette, respectively.

Enal	Store	PM	OC	EC	pPAHs	oPAHs	nPAHs	
Fuel	Stove	g/kg	g/kg	g/kg	mg/kg	mg/kg	mg/kg	reference
Field measureme	ent							
Wood	A movable metal	8.1-8.5	2.2-3.6	0.91-1.6	182-297 [1]	7.8-10	0.14-0.55	This study
	stove without							
	chimney							
	An improved	2.95-4.58 ^[2]	0.41-1.43	1.03-3.26				Li et al., 2009
	stove with two							
	pot, no grate							
	An improved	$2.67 \pm 0.42^{[2]}$	1.07±0.16	1.14±0.24				Li et al., 2009
	stove with one							
	pot, bottom grate							
	Stove/kang, one	3.04±0.85 ^[2]	0.98±0.32	1.32±0.39				Li et al., 2009
	pot, no grate							
	with a flue ^[3]							
Briquette	An improved	0.54-0.64	0.13-0.14	0.0040-0.0041	14-16 ^[4]	1.7-2.6	0.64-0.83	This study
	stove with a							
	chimney							
Coal cake	A brick stove	3.2-8.5	0.38-0.58	0.022-0.052	168-223 ^[4]	4.7-9.5	0.16-2.4	This study
	with an outdoor							
	flue							
Combustion und	er laboratory cond	itions						
Wood	Brick stove with	1.54±0.20						Zhang <i>et al.</i> ,
	a flue							2000

Table S5. Comparison of EFs of PM, OC, EC, parent PAHs and their derivatives measured from residential wood and coal combustion in rural China.

	Improved brick	4.10±1.5						Zhang <i>et</i>	al.,
	Metal stove with a flue	2.67±1.20						Zhang <i>et</i> 2000	al.,
	A typical brick stove/kang with one pot and an	1.6±0.32	0.60±0.35	0.94±0.40	6.4±2.8 ^[4]	0.37±0.27	0.0051±0.0029	Shen <i>et al., 2</i>	2012
Briquette	Metal stove without flue	0.27±0.073						Zhang <i>et</i> 2000	al.,
	Metal stove with a flue	0.22±0.11						Zhang <i>et</i> 2000	al.,
	Improved metal stove without flue	0.48±0.57						Zhang <i>et</i> 2000	al.,
	Metal stove with a flue ^[5]	0.62±0.73						Zhang <i>et</i> 2000	al.,
	A metallic outer cover and thermal-insulated ceramic liner ^[6]	1.33-19.6	0.017-13.8	0.004-0.675	69.0-160 ^[7]			Chen et al.,	2005
	A traditional portable stove	2.78-26.4	1.91-13.0	0.044-0.64				Zhi <i>et al.</i> , 1 2009	2008,
	An improved stove with an upper lid and a	2.54-9.85	1.02-6.17	0.011-0.16				Zhi <i>et al.</i> , 1 2009	2008,

	flue						
	Stoves with				186-812 ^[8]		Liu et al., 2009
	single or double						
	flues						
	A metallic outer				0.049 ^[7]		Chen et al., 2004
	cover and						
	thermal-insulated						
	ceramic liner						
	A movable	0.17±0.010	0.021±0.0020	0.0042±0.0021	$14\pm3.1^{[9]}$	0.29±0.016	Shen et al.,
	metallic stove						2010a, 2010b
	without flue						
	A Stove with a	0.614±0.0248			0.011±0.0093		Ge et al., 2004
	flue,				(only BaP) ^[10]		
	a cylinder 24 cm						
	in diameter and						
	50 cm in height						
Coal cake	A Stove with a	0.995±0.0609			0.0021±0.0022		Ge et al., 2004
	flue,				(only BaP)		
	a cylinder 24 cm						
	in diameter and						
	50 cm in height						

[1] EFs of a total of 28 PAHs analyzed by GC-MS. Results are gas- and particle-phase combined.

[2] PM_{2.5} measured in the study

[3] The fuel was branch

[4] Analysis methods were the same as those for the wood, and the results are gas- and particle-phase combined.

[5] Honeycomb coal from a special coal mine in Shanxi

[6] A variety of coals (1 anthracite, 1 sub-bituminous and 3 bituminous coals) were burned.

- [7] 14 parent PAHs in both gaseous and particle phases.
- [8] 15 PAHs (except for NAP) were analyzed by GC-MS. Results are total PAHs in both gaseous and particulate phases.
- [9] 16 PAHs in both gaseous and particle phases. Analytical methods were the same as those in this study.
- [10] BaP was analyzed by HPLC. Results are total BaP in both gaseous and particle phases.

Reference:

Chen, Y.; Sheng, G.; Bi, X.; Feng, Y.; Mai, B.; Fu, J. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. *Environ. Sci. Technol.* **2005**, *39*(6), 1861-7.

Chen, Y.; Bi, X.; Mai, B.; Sheng, G.; Fu, J. Emission characterization of particulate/gaseous phases and size association for polycyclic aromatic hydrocarbons form residential coal combustion. *Fuel.* **2004**, *83*, 781-790.

Ge, S.; Xu, X.; Chow, J.; Watson, J.; Sheng, Q.; Liu, W.; Bai, Z.; Zhu, T.; Zhang, J. Emissions of air pollutants from household stoves: honeycomb coal versus coal cake. *Environ. Sci. Technol.* **2004**, *38*, 4612-4618.

Li, X.; Wang, S.; Duan, L.; Hao, J.; Nie, Y. Carbonaceous aerosol emissions from household biofuel combustion in China. *Environ. Sci. Technol.*, **2009**, *43*(15), 6076-6081.

Liu, W.; Dou, H.; Wei, Z.; Chang, B.; Qiu, W.; Liu, Y.; Tao, S. Emission characteristics of polycyclic aromatic hydrocarbons form combustion of different residential coals in North China. *Sci. Total Environ.* **2009**, *407*, 1436-1446.

Shen, G; Yang, Y.; Wang, W.; Tao, S.; Zhu, C.; Min, Y.; Xue, M.; Ding, J.; Wang, B.; Wang, R.; Shen, H.; Li, W.; Wang, X.; Russell, A. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. *Environ. Sci. Technol.* **2010a**, *44*(*18*), 7157-7162.

Shen, G.; Wang, W.; Yang, Y.; Zhu, C.; Min, Y.; Xue, M.; Ding, J.; Li, W.; Wang, B.; Shen, H.; Wang, R.; Wang, X.; Tao, S. Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural Northern China. *Atmos. Environ.* **2010b**, *44*(*39*), 5237-5243.

Shen, G; Tao, S.; Wei, S.; Zhang, Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.; Huang, Y.; Chen, Y.; Chen, H.; Yang, Y.; Wang, W.; Wang, X.; Liu, W.; Simonich, S. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons form residential wood combustion in rural China. *Environ. Sci. Technol.* **2012**, *46*(*15*), 8123-8130.

Zhang, J.; Smith, K.; Ma, Y.; Ye, S.; Jiang, F.; Qi, W.; Liu, P.; Khalil, M.; Rasmussen, R.; .Thorneloe, S. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. *Atmos. Environ.* **2000**, *34*(*26*), 4537-4549.

Zhi, G.; Chen, Y.; Feng, Y.; Xiong, S.; Li, J.; Zhang, G.; Sheng, G.; Fu, J. Emission characteristics of carbonaceous particles from various residential coal-stoves in China. *Environ. Sci. Technol.* **2008**, *42*(*9*), 3310-3315.

Zhi, G.; Peng, C.; Chen, Y.; Liu, D.; Sheng, G.; Fu, J. Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate. *Environ. Sci. Technol.* **2009**, *43*(*15*), 5586-5591.