Supplementary Data

SEM Images of Cell-Embedded Scaffold

We captured scanning electron microscope (SEM) images of the mouse embryonic stem cell (mESC)–embedded collagen scaffold 4 days postseeding. In addition to Figure 2 (in the article), higher-magnification images showing the embryoid body (EB) structures within the scaffold pores are presented here.

Mm99999915_g1

107

SUPPLEMENTARY FIG. S1. Collagen scaffold scanning electron microscopic (SEM) images.

Examined Genes Representative of the Three Germ Layers

SUFFLEMENTARY TABLE ST. GENES ANALIZED FOR EACH GERM LATER							
Germ layer	Gene	Applied Biosystems assay	Amplicon length 86 56				
Primitive streak	Bry (T, brachyury homolog)	Mm00436877_m1 Mm00443072_m1					
Letoderini	Nestin	Mm00450205_m1	72				
Mesoderm	Flk1 (fetal liver kinase 1)	Mm01222421_m1	64				
Endoderm	Sor17 (sex determining region Y-box 17)	Mm00488363 m1	86				

GAPDH (glyceraldehyde 3-phosphate dehydrogenase)

SUPPLEMENTARY TABLE S1. GENES ANALYZED FOR EACH GERM LAYER

Real-Time Polymerase Chain Reaction Analysis on Day 2

Control

SUPPLEMENTARY FIG. S2. Gene expression of mouse embryonic stem cells (mESCs) 2 days postseeding under cyclic stretching.

TaqMan[®] Array Custom Micro Fluidic Card

soderm, or endoderm. The following list presents the 96 analyzed gene, where upregulated (red) or downregulated (green) genes were marked when the change was observed in more than 20% of at least three of four experiments.

Examined genes are specifically associated with pluripotency and stemness or differentiation to ectoderm, me-

Gene	Fold change (Osc/Static)	Gene	Fold change (Osc/Static)	Gene	Fold change (Osc/Static)	Gene	Fold change (Osc/Static)
18S	1	Foxd3		LAMB1		RAF1	1
ACTB		Gabrb3		Lamb1-1		REST	
Actc1		GAL		LAMC1		Runx2	
Afp		GAPDH		LEFTY1		SEMA3A	
BXDC2		GATA4		LEFTY2		Serpina1a	
CD34		GATA6		Lifr		SFRP2	
Cd9		GBX2		LIN28		SOX17	
CDH5		Gcg		Myf5		SOX2	Ĵ
CDX2		Gcm1		MYOD1		Sst	
Col1a1		GDF3	1	NANOG		SYCP3	
Col2a1		Gfap		NES		SYP	
Commd3		GRB7		NEUROD1		Т	
Crabp2		HBB		NODAL		TAT	
CTNNB1		Hbz		NOG		Tcfcp2I1	
DDX4		HLXB9		NPPA		Tdgf1	
DES		IFITM1		NR5A2		TERT	
DNMT3B		IFITM2		NR6A1		TH	
EEF1A1		IGFBP2		Olig2		UTF1	
Eomes		IL6ST		Pax4		Wt1	
Eras		INS2		PAX6		Xist	
Fgf4		IPF1		PECAM1		ZFP42	
FGF5		ISL1		Podxl			
Fit1		KIT		POU5F1		1	
Fn1		KRT1		PTEN		1	
EOXA2		Lama1		PTE1A	1	1	

SUPPLEMENTARY FIG. S3. TaqMan list of genes.

The following differentiation-associated genes were upregulated, and we elaborate their path in early differentiation of mESCs.

- *Actc1*: related to early cardiac differentiation¹
- *Col2a1*: related to chondrogenesis²
- Gcm1: related to trophectodermal differentiation³
- *Myf5*: related to myogenic mesodermal⁴
- Sst: related to endocrine cell⁵
- Wt1: key regulator of mesenchyme to epithelial balance in the development of certain mesodermal organs and responsible for mesenchyme maintenance⁶

In the article (Fig. 5) we present the gene enrichment map correlating the changes in the examined genes with biological processes.

Viability of Cells Under Stretch Forces

To assess cell viability in the 3D scaffolds, constructs were loaded with calcein acetoxymethyl ester (calcein AM; 1 μ M), which stains live cells, and with ethidium homodimer-1 (4 μ M) (Sigma-Aldrich, St. Louis, MO), which stains dead cells, for 30 min at 37°C. Scaffolds were visualized using a confocal microscope. Viability quantification was performed using MATLAB (The Mathworks, Natick, MA). The total number of live (labeled in green) and dead (labeled in red) cells was quantified as the number of green/red pixels in the image and viability was determined as number of live cells divided by the total number of cells.

The following figure presents fluorescence images of scaffolds with cells.

SUPPLEMENTARY FIG. S4. Viability test for mESCs under stretch forces: green, live cells; red, dead cells.

Note that in the EB state, the cells were not entirely separated to single cells; therefore, in some cases, green dots present groups of cells.

Quantification of the images demonstrated high percentages (>80%) of viability under all conditions, as summarized in the following table.

	Day 2	EBs day 4	Day 6
Cyclic stretch	83.33	$\begin{array}{c} 79.41 \pm 1.83 \\ 91.29 \pm 0.85 \end{array}$	90.71 ± 5.29
Control	81.6±3.62		98.68 ± 0.42

EBs, embryoid bodies.

References

1. Takeuchi, J.K., and Bruneau, B.G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature **459**, 708, 2009.

- 2. Waese, E.Y., and Stanford, W.L. One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Res **6**, 34, 2011.
- Matin, M.M., Walsh, J.R., Gokhale, P.J., Draper, J.S., Bahrami, A.R., Morton, I., Moore, H.D., and Andrews, P.W. Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 22, 659, 2004.
- Sakurai, H., Sakaguchi, Y., Shoji, E., Nishino, T., Maki, I., Sakai, H., Hanaoka, K., Kakizuka, A., and Sehara-Fujisawa, A. *In vitro* modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One 7, e47078, 2012.
- 5. Takeuchi, H., Nakatsuji, N., and Suemori, H. Endodermal differentiation of human pluripotent stem cells to insulinproducing cells in 3D culture. Sci Rep **4**, 4488, 2014.
- 6. Chau, Y.Y., and Hastie, N.D. The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis. Trends Genet **28**, 515, 2012.