Supplementary information

Molecular mechanism of allosteric modulation at G protein-coupled receptors: insight from a binding kinetics study at the human adenosine A_1 receptor

Dong Guo, Suzanne N. Venhorst, Arnault Massink, Jacobus P. D. van Veldhoven, Georges Vauquelin, Adriaan P. IJzerman & Laura H. Heitman

Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands (D.G.; S.N.V.; A.M.; J.P.D.V.; A.P.IJ.; L.H.H); Institute for Molecular Biology and Biotechnology, Free University of Brussels (VUB), Pleinlaan 2, B-1050 Brussel, Belgium (G.V).

Table of Contents

SYNTHESIS	2
DATA SIMULATION	6
FIGURE S1	10
REFERENCES	10

Synthesis

All solvents and reagents were purchased from commercial sources and were of analytical grade. ¹H and ¹³C NMR spectra were recorded on a Bruker AV 400 liquid spectrometer (¹H NMR, 400 MHz; ¹³C NMR, 100 MHz) at ambient temperature. Chemical shifts are reported in parts per million (ppm), are designated by δ and are downfield to the internal standard tetramethylsilane (TMS). Coupling-constants are reported in Hz and are designated as J. High resolution mass spectrometry was performed by Leiden Institute of Chemistry and recorded by direct injection (2 µL of a 2 µM solution in water/MeCN; 50/50; v/v and 0.1% formic acid) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 275°C) with resolution R = 60000 at m/z 400 (mass range m/z = 150-2000) and calibrated for dioctylphthalate (m/z = 391.28428). Analytical purity of the final compounds was determined by high performance liquid chromatography (HPLC) with a Phenomenex Gemini 3u C18 110A column (50 x 4.6 mm, 3 µm), measuring UV absorbance at 254 nm. Sample preparation and HPLC method were as follows, unless stated otherwise: 0.3-0.8 mg of compound was dissolved in 1 mL of a 1:1:1 mixture of CH₃CN/H₂O/t-BuOH and eluted from the column within 15 minutes, with a three component system of H₂O/CH₃CN/1% TFA in H₂O, decreasing polarity of the solvent mixture in time from 80/10/10 to 0/90/10. All compounds showed a single peak at the designated retention time and are at least 95% pure. Thin-layer chromatography (TLC) was routinely consulted to monitor the progress of reactions, using aluminum-coated Merck silica gel F₂₅₄ plates. Purification by column chromatography was achieved by use of Grace

Davison Davisil silica column material (LC60A 30-200 micron). Microwave reactions (MW) were performed in the Biotage Initiator in a closed vessel at a set temperature.

Scheme S1

$$O_2N$$
 O_2N
 O_2N

a) K₂CO₃, acetone, 70 °C, overnight; b) H₂, Pd/C(10%), MeOH, RT, overnight; c) 6-chloroadenosine, Et₃N, EtOH, MW, 120 °C, 2.5h.

4-pentyloxy-nitrobenzene.

Procedure followed according to Narlawar *et al.* and Wada *et al.* (Narlawar *et al.*, 2010; Wada *et al.*, 2002). Yellow oil, quantitative yield.

¹H NMR (400 MHz, CDCl₃): δ 8.21 (d, J = 9.2 Hz, 2H), 6.94 (d, J = 9.2 Hz, 2H), 4.05 (t, J = 6.4 Hz, 2H), 1.86-1.58 (m, 2H), 1.50-1.35 (m, 4H), 0.94 (t, J = 7.2 Hz, 3H)

4-pentyloxyaniline

Procedure based on Carrigan *et al.* (Carrigan *et al.*, 2002). 4-Pentyloxy-nitrobenzene (3.76 g, 18.0 mmol) was dissolved in MeOH, palladium (10% w/w on carbon) (38 mg,

1% w/w of starting material) was added and stirred overnight at room temperature in a Parr apparatus under a hydrogen (3 bar) atmosphere. By TLC (1 EtOAc: 4 Pet. ether) it was shown the reaction went to completion and subsequently the Pd/C was removed by filtration over celite. After evaporation of the filtrate *in vacuo* 3.16 g (yield 98%) of a brown oil was obtained. ¹H NMR (400 MHz, CDCl₃): δ 6.77 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 3.91 (t, J = 6.8 Hz, 2H), 3.31 (s br, 2H), 1.82-1.73 (m, 2H), 1.49-1.35 (m, 4H), 0.95 (t, J = 7.2 Hz, 3H)

4-nonyloxyaniline

Compound is commercially available from Alfa Aesar (Karlsruhe, Germany)

N^6 -(4-pentyloxyphenyl)adenosine (LUF7161)

Experimental procedure followed according to Narlawar *et al.* (Narlawar *et al.*, 2010). White solid 356 mg, yield 82%. ¹H NMR (400 MHz, DMSO-d6): δ 9.81 (s, 1H), 8.50 (s, 1H), 8.33 (s, 1H), 7.76 (d, J = 9.2 Hz, 2H), 6.90 (d, J = 9.2 Hz, 2H), 5.94 (d, J = 6.0 Hz, 1H), 5.49 (d, J = 6.4 Hz, 1H), 5.33 (dd, J = 6.8, 4.8 Hz, 1H), 5.22 (d, J = 4.4 Hz, 1H), 4.63 (dd, J = 11.2, 6.0 Hz, 1H), 4.18-4.14 (m, 1H), 3.99-3.96 (m, 1H), 3.94 (t, J = 6.4 Hz, 2H), 3.72-3.66 (m, 1H), 3.60-3.54 (m, 1H), 1.71 (pentet, J = 6.8 Hz, 2H), 1.44-1.30 (m, 4H), 0.90 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d6): δ 154.8, 152.5, 152.2, 149.2, 140.6, 132.5, 122.9, 120.3, 114.3, 88.1, 86.1, 73.8, 70.8, 67.7, 61.8, 28.6, 27.9, 22.1, 14.1. HPLC: purity 99%, retention time 7.74 min. HRMS (ESI) m/z calcd for $C_{21}H_{27}N_5O_5^+$: 430.20850, found: 430.20807

N^6 -(4-nonvloxyphenyl) adenosine (LUF7160)

Experimental procedure followed according to Narlawar *et al.* (Narlawar *et al.*, 2010). Off white solid 381 mg, yield 78%. 1 H NMR (400 MHz, DMSO-d6): δ 9.82 (s, 1H), 8.50 (s, 1H), 8.33 (s, 1H), 7.76 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 9.2 Hz, 2H), 5.94 (d, J = 6.4 Hz, 1H), 5.49 (d, J = 6.4 Hz, 1H), 5.33 (dd, J = 6.8, 4.8 Hz, 1H), 5.22 (d, J = 4.8 Hz, 1H), 4.63 (dd, J = 11.2, 6.0 Hz, 1H), 4.18-4.14 (m, 1H), 3.99-3.96 (m, 1H), 3.93 (t, J = 6.4 Hz, 2H), 3.72-3.66 (m, 1H), 3.60-3.54 (m, 1H), 1.70 (pentet, J = 7.2 Hz, 2H), 1.43-1.36 (m, 2H), 1.35-1.20 (m, 10H), 0.86 (t, J = 6.8 Hz, 3H). 13 C NMR (101 MHz, DMSO-d6): δ 154.7, 152.4, 152.2, 149.2, 140.6, 132.5, 122.8, 120.3, 114.3, 88.1, 86.1, 73.8, 70.8, 67.7, 61.8, 31.5, 29.2, 29.0, 28.9, 28.8, 25.7, 22.3, 14.1. HPLC: purity 100%, retention time 10.63 min. HRMS (ESI) m/z calcd for $C_{25}H_{35}N_5O_5^+$: 486.27110, found: 486.270840

Data simulation

Table S1. Data simulation of the binding of radioligand, 'c', during a period of 50 min, either alone or in the presence of increasing concentrations of the bitopic ligand, 'ab'. The microscopic binding kinetics of the bitopic ligand 'ab' was defined as $k_{+a} = 1 \times 10^5 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-a} = 1 \text{ min}^{-1}$, $k_{+b} = 1 \times 10^5 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-b} = 1 \text{ min}^{-1}$ and [L] = 0.29 mM. The binding kinetics of the monovalent ligand 'c' was defined as $k_{+c} = 1 \times 10^7 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-c} = 0.3 \text{ min}^{-1}$ and [c] = 100 nM. The cooperativity factors of 'ab' were set as $\alpha_{ab} = 10$.

time	Concentration of 'ab'(nM)						
	0	100	300	1000	3000	10000	30000
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.5	36.77	36.60	36.26	35.11	32.10	24.04	12.74
1.0	55.96	55.47	54.51	51.31	43.54	26.85	11.60
1.5	65.98	65.15	63.54	58.34	46.53	25.24	10.23
2.0	71.21	70.07	67.87	60.93	46.09	22.86	9.02
2.5	73.94	72.52	69.79	61.35	44.30	20.52	7.98
3.0	75.37	73.68	70.47	60.74	42.02	18.39	7.08
3.5	76.11	74.18	70.53	59.64	39.64	16.50	6.30
4.0	76.50	74.33	70.26	58.31	37.30	14.82	5.63
4.5	76.70	74.30	69.82	56.91	35.07	13.33	5.04
5.0	76.8	74.8	71.0	60.0	41.3	21.6	13.0
10	76.92	72.18	63.78	42.99	18.37	4.97	2.08
15	76.92	70.21	58.88	33.94	11.26	2.94	1.51
20	76.92	68.40	54.60	27.42	7.81	2.36	1.38
25	76.92	66.72	50.88	22.73	6.13	2.19	1.35
30	76.92	65.16	47.64	19.35	5.32	2.14	1.34
35	76.92	63.72	44.81	16.91	4.92	2.13	1.34
40	76.92	62.39	42.35	15.16	4.73	2.12	1.34
45	76.92	61.16	40.21	13.89	4.64	2.12	1.34
50	76.92	60.02	38.34	12.98	4.59	2.12	1.34

Data are shown as the percentage of B_{max}.

Table S2 Data simulation of the binding of radioligand, 'c', during a period of 50 min, either alone or in the presence of increasing concentrations of the bitopic ligand, 'ab'. The microscopic binding kinetics of the bitopic ligand 'ab' was defined as $k_{+a} = 1 \times 10^5 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-a} = 1 \text{ min}^{-1}$, $k_{+b} = 1 \times 10^5 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-b} = 1 \text{ min}^{-1}$ and [L] = 0.29 mM. The binding kinetics of the monovalent ligand 'c' was defined as $k_{+c} = 1 \times 10^7 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-c} = 0.3 \text{ min}^{-1}$ and [c] = 100 nM. The cooperativity factors of 'ab' were set as $\alpha_{ab} = 0.1$.

time	Concentration of 'ab'(nM)						
	0	100	300	1000	3000	10000	30000
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.5	36.77	36.67	36.48	35.82	34.07	29.24	21.79
1.0	55.96	55.69	55.16	53.39	48.96	38.71	27.41
1.5	65.98	65.56	64.74	62.06	55.70	42.77	30.89
2.0	71.21	70.69	69.67	66.38	58.93	45.13	33.60
2.5	73.94	73.35	72.21	68.57	60.59	46.77	35.75
3.0	75.37	74.74	73.52	69.69	61.52	48.00	37.47
3.5	76.11	75.46	74.20	70.27	62.08	48.96	38.84
4.0	76.50	75.83	74.55	70.58	62.44	49.70	39.94
4.5	76.70	76.03	74.73	70.75	62.70	50.29	40.82
5.0	76.81	76.13	74.83	70.85	62.88	50.75	41.53
10	76.92	76.24	74.93	71.01	63.42	52.28	44.03
15	76.92	76.24	74.93	71.02	63.47	52.42	44.29
20	76.92	76.24	74.93	71.02	63.47	52.43	44.32
25	76.92	76.24	74.93	71.02	63.47	52.43	44.33
30	76.92	76.24	74.93	71.02	63.47	52.43	44.33
35	76.92	76.24	74.93	71.02	63.47	52.43	44.33
40	76.92	76.24	74.93	71.02	63.47	52.43	44.33
45	76.92	76.24	74.93	71.02	63.47	52.43	44.33
50	76.92	76.24	74.93	71.02	63.47	52.43	44.33

Data are shown as the percentage of B_{max} .

Table S3 Data simulation of the binding of radioligand, 'c', during a period of 50 min, either alone or in the presence of increasing concentrations of the bitopic ligand, 'ab'. The microscopic binding kinetics of the bitopic ligand 'ab' was defined as $k_{+a} = 1 \times 10^5 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-a} = 1 \text{ min}^{-1}$, $k_{+b} = 1 \times 10^5 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-b} = 1 \text{ min}^{-1}$ and [L] = 0.29 mM. The binding kinetics of the monovalent ligand 'c' was defined as $k_{+c} = 1 \times 10^7 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-c} = 0.3 \text{ min}^{-1}$ and [c] = 100 nM. The cooperativity factors of 'ab' were set as $\alpha'_{ab} = 10$.

time	Concentration of 'ab'(nM)							
	0	100	300	1000	3000	10000	30000	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.5	36.77	36.61	36.30	35.25	32.47	24.93	13.99	
1.0	55.96	55.50	54.59	51.58	44.20	28.07	12.81	
1.5	65.98	65.20	63.67	58.72	47.38	26.51	11.32	
2.0	71.21	70.13	68.03	61.39	47.06	24.11	10.00	
2.5	73.94	72.59	69.98	61.89	45.34	21.71	8.86	
3.0	75.37	73.76	70.69	61.33	43.12	19.52	7.86	
3.5	76.11	74.27	70.77	60.28	40.77	17.56	7.00	
4.0	76.50	74.43	70.52	59.01	38.45	15.81	6.25	
4.5	76.70	74.41	70.11	57.64	36.23	14.26	5.60	
5.0	76.81	74.30	69.62	56.26	34.13	12.88	5.04	
10	76.92	72.37	64.28	44.00	19.35	5.35	2.23	
15	76.92	70.47	59.51	35.00	11.95	3.09	1.56	
20	76.92	68.71	55.32	28.43	8.25	2.41	1.39	
25	76.92	67.08	51.66	23.63	6.40	2.21	1.35	
30	76.92	65.56	48.45	20.12	5.47	2.15	1.34	
35	76.92	64.15	45.64	17.56	5.01	2.13	1.34	
40	76.92	62.84	43.17	15.70	4.78	2.12	1.34	
45	76.92	61.63	41.01	14.33	4.66	2.12	1.34	
50	76.92	60.50	39.12	13.34	4.60	2.12	1.34	

Data are shown as the percentage of B_{max} .

Table S4 Data simulation of the binding of radioligand, 'c', during a period of 50 min, either alone or in the presence of increasing concentrations of the bitopic ligand, 'ab'. The microscopic binding kinetics of the bitopic ligand 'ab' was defined as $k_{+a} = 1 \times 10^5 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-a} = 1 \text{ min}^{-1}$, $k_{+b} = 1 \times 10^5 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-b} = 1 \text{ min}^{-1}$ and [L] = 0.29 mM. The binding kinetics of the monovalent ligand 'c' was defined as $k_{+c} = 1 \times 10^7 \text{ M}^{-1} \cdot \text{min}^{-1}$, $k_{-c} = 0.3 \text{ min}^{-1}$ and [c] = 100 nM. The cooperativity factors of 'ab' were set as $\alpha'_{ab} = 0.1$.

time	Concentration of 'ab'(nM)						
	0	100	300	1000	3000	10000	30000
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.5	36.77	36.65	36.41	35.60	33.46	27.64	19.03
1.0	55.96	55.65	55.03	52.99	47.95	36.67	25.05
1.5	65.98	65.51	64.60	61.62	54.68	41.15	29.45
2.0	71.21	70.64	69.53	65.97	58.07	44.04	32.84
2.5	73.94	73.31	72.08	68.22	59.93	46.12	35.46
3.0	75.37	74.70	73.42	69.41	61.03	47.66	37.48
3.5	76.11	75.43	74.11	70.05	61.74	48.82	39.04
4.0	76.50	75.81	74.48	70.42	62.22	49.70	40.24
4.5	76.70	76.01	74.68	70.63	62.55	50.36	41.17
5.0	76.81	76.11	74.79	70.76	62.79	50.86	41.89
10	76.92	76.23	74.93	71.01	63.43	52.33	44.14
15	76.92	76.24	74.93	71.02	63.47	52.42	44.31
20	76.92	76.24	74.93	71.02	63.47	52.43	44.33
25	76.92	76.24	74.93	71.02	63.47	52.43	44.33
30	76.92	76.24	74.93	71.02	63.47	52.43	44.33
35	76.92	76.24	74.93	71.02	63.47	52.43	44.33
40	76.92	76.24	74.93	71.02	63.47	52.43	44.33
45	76.92	76.24	74.93	71.02	63.47	52.43	44.33
50	76.92	76.24	74.93	71.02	63.47	52.43	44.33

Data are shown as the percentage of B_{max}.

References

Carrigan CN, Bartlett RD, Esslinger CS, Cybulski KA, Tongcharoensirikul P, Bridges RJ, et al. (2002). Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport. *J Med Chem* **45**(11): 2260-2276.

Narlawar R, Lane JR, Doddareddy M, Lin J, Brussee J, IJzerman AP (2010). Hybrid ortho/allosteric ligands for the adenosine A₁ receptor. *J Med Chem* **53**(8): 3028-3037.

Wada S, Urano M, Suzuki H (2002). The newborn surface of dull metals in organic synthesis. Bismuth-mediated solvent-free one-step conversion of nitroarenes to azoxyand azoarenes. *J Org Chem* **67**(23): 8254-8257.

Figure S1

Competition association assay of a radioligand, 'c' (with $k_{+c} = 1.~10^7~M^{-1} \cdot min^{-1}$, $k_{-c} = 0.3$ min⁻¹ and [c] = 100 nM), during a period of 50 min, either alone or in the presence of increasing concentrations of 'ab' ($k_{+a} = 1 \times 10^5~M^{-1} \cdot min^{-1}$, $k_{-a} = 1~min^{-1}$, $k_{+b} = 1 \times 10^5~M^{-1} \cdot min^{-1}$, $k_{-b} = 1~min^{-1}$ and [L] = 0.29 mM) with different cooperativity factors: 1) $\alpha_{ab} = 10$; 2) $\alpha_{ab} = 0.1$; 3) $\alpha'_{ab} = 10$; 4) $\alpha'_{ab} = 0.1$. Data input into this analysis were from Table S1 to S4, respectively.