Supporting Information

PKC inhibition results in a $K_v1.5+K_v\beta1.3$ pharmacology closer to $K_v1.5$ channels

A Macías¹, A de la Cruz¹, A Prieto¹, DA Peraza¹, MM Tamkun², T González¹, C Valenzuela¹

¹Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Arturo Duperier 4, 28029 Madrid

²Program in Molecular, Cellular, and Integrative Neuroscience, Dept. of Biomedical Sciences & Dept. of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA

Running title: $K_{\nu}1.5+K_{\nu}\beta1.3$ pharmacology and PKC

Address for correspondence:

Carmen Valenzuela, Ph.D.

Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM)

Arturo Duperier 4

28029 Madrid, SPAIN

Phone: +34915854493

Fax: +34915854401

E-mail: cvalenzuela@iib.uam.es

SUPPLEMENTAL TABLES

SUPPLEMENTAL TABLE 1: IC₅₀ and n_H from the of the concentration-response curves to bupivacaine in $K_v 1.5 + K_v \beta 1.3$ channels expressed in cells treated with hispidin and bisindolylmaleimide II in comparison with those obtained of bupivacaine on $K_v 1.5$ and $K_v 1.5 + K_v \beta 1.3$ channels.

	IC ₅₀ (μM)	n_{H}
K _v 1.5	13.1 ± 0.8 *	
$K_v 1.5 + K_v \beta 1.3$ Control	47.5 ± 5.1 *	
$K_v 1.5 + K_v \beta 1.3$ Bis II	12.4 ± 1.8	0.88 ± 0.09
$K_v 1.5 + K_v \beta 1.3$ Hispidin	27.3 ± 1.3	1.23 ± 0.10

^{*:} Taken from (Gonzalez et al., 2002)

REFERENCES

Gonzalez T, Navarro-Polanco R, Arias C, Caballero R, Moreno I, Delpon E, et al. (2002). Assembly with the $Kv\beta1.3$ subunit modulates drug block of hKv1.5 channels. Mol Pharmacol 62: 1456-1463.

FIGURE LEGENDS

FIGURE S1: Concentration dependence of bupivacaine-induced blockade of hispidintreated $K_v1.5+K_v\beta1.3$ channels. (A) The dashed and dotted lines represent the dose-response curves obtained for the bupivacaine-induced blockade of $K_v1.5$ and $K_v1.5+K_v\beta1.3$ channels, respectively (taken from González et al., 2002). Reduction in the current (relative to the control) at the end of depolarising steps from -80 to +60 mV was used as an index of blockade. (•): Concentration-response curves for bupivacaine in bisindolylmaleimide II-treated $K_v1.5+K_v\beta1.3$ channels and in hispidin-treated $K_v1.5+K_v\beta1.3$ channels (o). (B) Reduction in the current (relative to the control) at 50 ms (o) and at 250 ms (o) depolarising steps from -80 to +60 mV. Each point represents the mean±S.E.M. of three to four experiments. The lines represent the fit of the experimental data to a monophasic Hill equation.

FIGURE S2: Concentration dependence of bupivacaine- (A) and quinidine-induced (B) blockade of calphostine C-treated $K_v1.5+K_v\beta1.3$ channels. The dashed and continuous lines represent the dose-response curves obtained for the bupivacaine- or quinidine-induced blockade at 50 ms (\circ) and at 250 ms (\bullet) depolarising steps from -80 to +60 mV, respectively. Each point represents the mean \pm S.E.M. of three to eight experiments. The continuous line represents the fit of the experimental data to a biphasic Hill equation.

FIGURE S3: Concentration dependence of bupivacaine- (A) and quinidine-induced (B) blockade of bisindolylmaleimide II-treated $K_v1.5+K_v\beta1.3$ channels. The dashed and continuous lines represent the dose-response curves obtained for the bupivacaine- or quinidine-induced blockade at 50 ms (\circ) and at 250 ms (\bullet) depolarising steps from -80 to +60 mV, respectively. Each point represents the mean \pm S.E.M. of three to eight experiments. The continuous line represents the fit of the experimental data to a monophsic Hill equation.

FIGURE S4: Absolute values for bupivacaine- and quinidine- blockade of calphostin C- and bisindolylmaleimide II-treated $K_v1.5+K_v\beta1.3$ channels. Magnitude of calphostin C- $K_v1.5+K_v\beta1.3$ currents in the absence and in the presence of different bupivacaine (A) and quinidine (B) concentrations. Magnitude of bisindolylmaleimide II- $K_v1.5+K_v\beta1.3$ currents in the absence and in the presence of different bupivacaine (C) and quinidine (D) concentrations. Each point represents the mean±S.E.M. of three to eight experiments.

