SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure S1: Effects of Nutlin-3 on the expression of FoxM1 isoform A, B, and C in A2780 cells. Upper panel: Cells were treated with vehicle (0.05% DMSO) or 10 μ M Nutlin-3 for 3, 6 or 24 h. Lower panel: Cells were treated with DMSO, Nutlin-3, CHX, CHX+Nutlin-3, ActD or ActD+Nutlin-3 for 24 h. Total RNA was isolated and subjected to real-time RT-PCR analysis. GAPDH was used for normalization of FoxM1 expression. Data are presented as Mean \pm SD of 3 experiments. **indicates P < 0.01, and **** indicates P < 0.0001 by paired t-test. Difference alphabet letters indicate significant differences (P < 0.05) across treatments by Oneway ANOVA.

Supplementary Figure S2: Effects of Nutlin-3 on the expression of FoxM1 isoform A, B, and C in NCI-H23 cells. Upper panel: Cells were treated with vehicle (0.05% DMSO) or 10 μ M Nutlin-3 for 3, 6 or 24 h. Lower panel: Cells were treated with DMSO, Nutlin-3, CHX, CHX+Nutlin-3, ActD or ActD+Nutlin-3 for 24 h. Total RNA was isolated and subjected to real-time RT-PCR analysis. GAPDH was used for normalization of FoxM1 expression. Data are presented as Mean \pm SD of 3 experiments. *** indicates P < 0.001, and **** indicates P < 0.001 by paired t-test. Difference alphabet letters indicate significant differences (P < 0.05) across treatments by One-Way ANOVA.

Supplementary Figure S3: Effects of Nutlin-3 on the expression of FoxM1 isoform A, B, and C in HEC-1A cells.Upper panel: Cells were treated with vehicle (0.05% DMSO) or 10 μ M Nutlin-3 for 3, 6 or 24 h. Lower panel: Cells were treated with DMSO, Nutlin-3, CHX, CHX+Nutlin-3, ActD or ActD+Nutlin-3 for 24 h. Total RNA was isolated and subjected to real-time RT-PCR analysis. GAPDH was used for normalization of FoxM1 expression. Data are presented as Mean \pm SD of 3 experiments. Difference alphabet letters indicate significant differences (P < 0.05) across treatments by One-way ANOVA.

Supplementary Figure S4: Thiostrepton downregulates FoxM1 expression in OVCAR8 and PE01. Cells were treated with 5 μ M Thiostrepton for indicated time points, and Western blot analysis was performed to determine FoxM1 expression. β -actin was used as the loading control. Down-regulation of β -actin at 48 h reflects proteolysis due to cell death.

Supplementary Figure S5: Thiostrepton induces apoptosis in cancer cells. Cancer cells were treated with 5 μ M (A2780) or 10 μ M (HEC-1A) thiostrepton for 48 hours, and floating and attached cells were collected, stained with Annexin V (x-axis, FITC-A) and Propidium Iodide (PI) and sorted by flow cytometry. (A) Upper panels represent three replicates of untreated control cells, and low panels represents three replicates of A2780 cells treated with thiostrepton. Results indicate approximately 86% of cells undergoing early apoptosis in untreated cells. (B) In HEC-1A cells, both early and late apoptotic cells were observed in thiostrepton-treated cells.

	🛏 G1 (Saline, DMSO)
I —	📥 —— G2 (Carboplatin 80 mg/kg, DMSO)
I	G3 (Carboplatin 80 mg/kg, Thiostrepton 10 mg/kg)
I	G4 (Thiostrepton 30 mg/kg, Saline)

Supplementary Figure S6: Adverse effect of high dose of carboplatin. Dramatic weight loss was observed in mice treated with carboplatin alone (black line) or in combination with thiostrepton (red line) by day 21. Therefore, carboplatin dose was lowered to 20 mg/kg in subsequent treatments.

HEC-1A xenograft in DMSO-treated mouse

Supplementary Figure S7: Untreated HEC-1A tumor xenografts show large necrotic regions as indicated by Hematoxylin and Eosin (H&E) staining. Necrotic region containing pyknotic nuclei is indicated by black demarcation and asterisk. Serial section from the same region was stained with p53 antibody, and tumor cells surrounding the necrotic region show intense staining as expected because HEC-1A cells harbor mutant TP53.

FoxM1- Nuclear FoxM1 - Cytoplasmic staining staining Patient ID Intensity % cells Intensity % cells Grade **Histo-Subtype** Score Score III Serous Papillary serous III III Papillary serous III Papillary serous III NOS - Adenocarcinoma III Papillary serous III Papillary serous Π Papillary serous Papillary serous Π Papillary- mixed serous & mucinous III Carcinosarcoma Ш Papillary serous Papillary serous 85% - 2, 85% - 2, 2 to 3 III Clear cell 15% - 3 10% - 3 III Papillary III Serous III Papillary serous III Serous and endometrioid features Papillary, endometrioid, micropapillary, III solid and clear patterns III Papillary serous III Serous III Papillary serous Papillary serous III Papillary serous III Papillary serous III Papillary serous Adenocarcinoma, Mixed type not III otherwise specified III Serous (partial endometrioid components) III Mixed carcinoma, serous and transitional

Supplementary Table S1. Immunohistochemical analysis of FoxM1 expression

(Continued)

www.impactjournals.com/oncotarget/

	FoxM1 - Cytoplasmic staining		FoxM1- N staining	uclear					
Patient ID	Intensity Score	% cells	Intensity Score	% cells	Grade	Histo-Subtype			
30	3	100	3	95	III	Mixed cell type with a predominant endometrioid and focal clear cell and papillary serous types			
31	3	100	3	95	III	Papillary serous with psammoma bodies			
32	3	100	3	95	II	Cystadenocarcinoma, mixed serous and endometrioid type			
33	3	100	3	95	III	Serous with focal solid areas, endometrioid areas and transitional cell areas			
34	3	95	3	80	III	Mixed papillary serous, solid and clear cell			
35	3	100	3	75	III	Endometrioid carcinoma with focal clear, papillary, serous and squamous differentiation			
36	2	100	2	75	III	Endometrioid and serous papillary features			
37	3	100	3	80	III	Primary peritoneal adenocarcinoma, serous type			
38	3	100	3	90	III	Papillary serous			
39	3	100	3	95	III	Serous with psammoma bodies			
40	2	100	2 to 3	60% - 2, 30% - 3	III	Papillary serous			
41	3	100	3	90	III	Papillary serous			
42	3	100	3	95	III	Papillary serous			
43	3	100	3	95	III	Papillary serous			
44	3	100	3	80	III	Predominate transitional cell with serous microglandular differentiation			
45	3	100	3	95	III	Serous			
46	3	100	3	95	III	Papillary serous			
47	3	100	3	95	III	Serous			
48	2	100	2 to 3	60% - 2, 30% - 3	III	Mixed mucinous and serous			
49	3	100	3	95	II	Serous papillary cystadenocarcinoma			

Supp	lementary	Table S2.	Real-Time	RT-PCR	primers
------	-----------	-----------	------------------	---------------	---------

Gene	Forward	Reverse
FoxM1(total)	5'AGAATTGTCACCTGGAGCAG	5'TTCCTCTCAGTGCTGTTGATG
FoxM1A	5'GGTACACCCATCACCAGCTT	5'ATGGGTCTCGCTAAGTGTGG
FoxM1B	5'CGTGGATTGAGGACCACTTT	5'TCGGTCGTTTCTGCTGCTT
FoxM1C	5'CCCGAGCACTTGGAATCAC	5'TCCTCAGCTAGCAGCACCTT

Supplementary Table S3. p53 shRNA and FoxM1 shRNA sequences

shRNAs	Sequences
P53 shRNA-1 (V3LHS_333919)	TACACATGTAGTTGTAGTG
P53 shRNA-2 (V3LHS_333920)	TCTCTTCCTCTGTGCGCCG
FoxM1 shRNA-1 (V3LHS_396940)	AATAATCTTGATCCCAGCT
FoxM1 shRNA-5 (V2LHS_283849)	ATAATTAGAGGATAATTTG

Supplementary Table S4. Cell line STR genotypes

AMEL	Х	Х	Х	X	Х	Х	X
Penta_E-Allele 2		13		16	13		16
l ələllA-A_ranoP	10	10		13	5	12	9
Penta_D-Allele 2		6		13	13		
l 9l9llA-Q_67n9A	8	8		8	12	14	12
FGA-Allele 2	25	23		21	25		
FGA-Allele 1	18	19		21	24	20	23
D881119-4711880	17	17		14	15	13	
I 919114-6711880	15	15		14	14	13	14
D381328-VII4I6 7	17	16		18	14		
D381358-Allele 1	14	14		15	14	16	16
D21811-Allele 2	30	30		33.2	31.2		
D21811-Allele 1	28	28	NA	32.2	31	32.2	31
2 I911A-122810	17	18		16	17	17	
I I911A-12281U	16	16		13	16	16	12
C2E1PO-Allele 2		10		15	11	12	
CSF1PO-Allele 1	10	10	10	10	11	10	10
2 ələlla-XOqT	10	10	11	12	11	11	11
I 91911A-XOqT	8	8	8	8	11	6	~
2 ələliA-loHT		9	7	9.3	9.3		9.3
I 91911A-10HT	9	9	9	9.3	6	9.3	7
2 ələllA-AWv	16	16	20	17	17	16	
I 91911A-AWv	15	15	19	16	17	15	16
D16D539-Allele 3	13						
D165539-Allele 2	12	12		13	12		
D165539-Allele 1	11	11	12	11	12	6	11
Z 91911A-02887Q		10	11	11	14		
I 91911A-02827U	10	10	6	11	14	10	10
D138317-Allele 2	13	13		11	11		
I 91911A-71ESEIO	12	12	11	11	8	10	10
Z ƏIƏIIV-81885A	13	13		13		12	13
L 91911A-81882Q	10	10	11	11	11	11	11
Cell Line	A2780	NCI-H23	HEC-1A	ES2	SKOV3	PE01	OVCAR8

Г