Supplemental Materials Molecular Biology of the Cell

Umberger et al.

Figure S1: Quantification of PDGFRα, P-PDGFRα^{Y742}, P-Akt^{T308}, P-Akt^{S473}, and Akt in control and cilia transport mutant MEFs with or without PDGF-AA, with or without rapamycin, or with either LY294002 or OA, or LY294002 and OA. Annotations for statistically significant changes are indicated. Non-significant changes are not indicated, but statistics were performed. Statistical analyses are included in Supplementary Table S1 for S1B-D. ns p>0.05, * p<0.05, ** p<0.01, *** p<0.001.

A: Average densitometry values of PDGFRa, with and without rapamycin, normalized to a loading control (n=3).

B: Average densitometry values of P-PDGFR α^{Y742} normalized to a loading control (n=3).

- C: Average densitometry values of P-Akt^{T308} normalized to a loading control (n=3). D: Average densitometry values of P-Akt^{S473} normalized to a loading control (n=3).
- E: Average densitometry values of Akt normalized to a loading control (n=3).

F: Average densitometry values of Akt normalized to a loading control (n=3).

Figure S2: P-Akt^{T308} localization in control and cilia transport mutant MEFs. Serum starved control and cilia transport mutant MEFs were immunolabeled for P-Akt^{T308} (green) and for the basal body using y-tubulin (red).

Figure S3: Response of control and *Dync2h1^{lln}* MEFs grown in 0.5% serum to multiple treatments

A: Control and *Dync2h1^{lln}* MEFs grown in 0.5% serum were lysed and processed for Western blot analysis of P-Akt^{T308} under the indicated conditions (no serum,

+LY294002, +okadaic acid, +okadaic acid +LY294002, and +rapamycin). Lanes shown are re-arranged from a single gel.

B: Control and $Dync2h1^{lln}$ MEFs grown in 0.5% serum were immunolabeled for the catalytic subunit of PP2A, PP2Ac, and for the basal body using γ -tubulin

C: Control and Dync2h1^{lin} MEFs grown in 0.5% serum were lysed and processed for Western blot analysis of phosphoryed mTOR (P-mTOR^{S2448}), p70 S6K (P-p70 S6K^{T389}), and S6 (S6^{S235/236}). Lanes shown are re-arranged from a single gel.

D: Comparison of PDGFR α , P-PDGFR α^{Y742} , P-Akt^{T308}, and P-Akt^{S473} in Control and *Dync2h1^{lln}* MEFs grown in 0.5% serum with or without stimulation with PDGF-AA ligand. Lanes shown are re-arranged from a single gel.

Figure S4: Absence of cilia in serum-starve *lft172^{wim}* MEFs without and with rapamycin treatment and inhibition of mTORC1 signaling by rapamycin treatment.

A: Serum starved control MEFs were immunolabeled for PDGFR α (green) and for cilia using Arl13b (red).

B: Serum starved *Ift172^{wim}* MEFs were immunolabeled for PDGFR α (green) and for the basal body using γ -tubulin (red).

C: Serum starved and rapamycin treated *Ift172^{wim}* MEFs were immunolabeled for PDGFR α (green) and for cilia using Arl13b (red).

D: Rapamycin treatment inhibits phosphorylation of p70 S6K^{T389} in control and cilia transport mutant MEFs, with or without PDGF-AA.

Table 1: Statistical analysis of Western blot band intensities were carried out using Microsoft Excel. The significance values (compared to respective controls) were calculated using a two-tailed unpaired *t* test with a 95% confidence interval. -P: No PDGF-AA. +P: With PDGF-AA. +R: With rapamycin.

Ift122^{sopb}

Ift172^{wim}

WΤ

Table 1			
P-values			
MEFs	Proteins		
	P-Akt ^{T308}	P-Akt ^{S473}	P-PDGFR α ^{Y742}
Control -P vs Control +P	P<0.001	P<0.001	P<0.001
Control -P vs wim -P	P<0.05	P<0.001	P>0.05 (ns)
Control -P vs <i>sopb</i> -P	P<0.001	P<0.001	P<0.001
Control -P vs hnn -P	P<0.001	P>0.05 (ns)	P<0.05
Control +P vs <i>wim</i> +P	P>0.05 (ns)	P<0.01	P<0.01
Control +P vs <i>sopb</i> +P	P>0.05 (ns)	P<0.01	P>0.05 (ns)
Control +P vs hnn +P	P<0.001	P>0.05 (ns)	P>0.05 (ns)
	P-Akt ^{T308}	P-Akt ^{S473}	P-PDGFR α ^{Y742}
Control +R vs Control +P+R	P>0.05 (ns)	P>0.05 (ns)	P>0.05 (ns)
Control +R vs wim +R	P>0.05 (ns)	P>0.05 (ns)	P>0.05 (ns)
Control +R vs <i>sopb</i> +R	P>0.05 (ns)	P>0.05 (ns)	P>0.05 (ns)
Control +R vs hnn +R	P>0.05 (ns)	P>0.05 (ns)	P>0.05 (ns)
Control +R+P vs <i>wim</i> +R+P	P>0.05 (ns)	P>0.05 (ns)	P>0.05 (ns)
Control +R+P vs <i>sopb</i> +R+P	P>0.05 (ns)	P<0.05	P>0.05 (ns)
Control +R+P vs <i>hnn</i> +R+P	P>0.05 (ns)	P<0.05	P>0.05 (ns)
	P-Akt ^{T308}	P-Akt ^{S473}	P-PDGFR α ^{Y742}
wim -P vs wim +P	P>0.05 (ns)	P>0.05 (ns)	P>0.05 (ns)
wim +R vs wim +R+P	P>0.05 (ns)	P<0.001	P<0.001
wim -P vs wim +R	P>0.05 (ns)	P>0.05 (ns)	P>0.05 (ns)
sopb -P vs sopb +P	P>0.05 (ns)	P>0.05 (ns)	P<0.05
sopb + R vs sopb + R + P	P>0.05 (ns)	P<0.01	P<0.05
sopb -P vs sopb +R	P>0.05 (ns)	P>0.05 (ns)	P>0.05 (ns)
<i>hnn</i> -P vs <i>hnn</i> +P	P<0.01	P<0.001	P<0.05
hnn + R vs hnn $+ R + P$	P>0.05 (ns)	P>0.05 (ns)	P<0.01
hnn - P vs hnn + R	P<0.05	P<0.05	P>0.05 (ns)

Table 1: Statistical analysis of Western blot band intensities were carried out using Microsoft Excel. The significance values (compared to respective controls) were calculated using a two-tailed unpaired *t*-test with a 95% confidence interval.

-P: No PDGF-AA. +P: With PDGF-AA. +R: With rapamycin.