Giant resonance tuning of micro and nanomechanical oscillators

Miguel V. Vitorino^{1,2}, Simon Carpentier^{3,4}, Alain Panzarella¹, Mario S. Rodrigues², Luca Costa¹

¹⁾ European Synchrotron Radiation Facility, 71 Rue des Martyrs, 38000 Grenoble, France

²⁾ CFMC/Dep. Fisica, Faculdade de Ciência, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

³⁾ Université Joseph Fourier BP 53, 38041 Grenoble Cedex 9, France

⁴⁾ Université Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France

E-mail: Corresponding luca.costa@esrf.fr

Supporting Information

Resonance shift of the high frequency oscillator in presence of static field

Figure S1 shows the frequency shift of the resonance of the *Olympus BL-AC10DS* NMO oscillator in presence of a static field. The frequency shift is much lower compared to the shifts obtained employing the proposed method as it is shown in Fig. 3(b) in the main manuscript.

Figure S1: Frequency shift, for the high frequency oscillator NMO, due to a voltage sweep from 60V to 70V.

Phase signals

Here we report the phase between the excitation and the response of the oscillators that have been measured simultaneously to the amplitudes presented in Fig. 3 of the main manuscript.

Figure S2: Phase shift corresponding to the measurement in Fig. 3 of the main manuscript.