Supplementary Information

The Effect of Divalent Cation Removal on the Structure of Gram-negative Bacterial Outer Membrane Models

Luke. A. Clifton¹, Maximilian W. A. Skoda¹, Anton. P. Le Brun², Filip Ciesielski¹, Ivan Kuzmenko³, Stephen A. Holt² and Jeremy H. Lakey⁴.

¹ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, UK.

²Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.

³Advanced Photon Source, Argonne National Laboratories, Argonne, Illinois 60439, USA.

⁴Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.

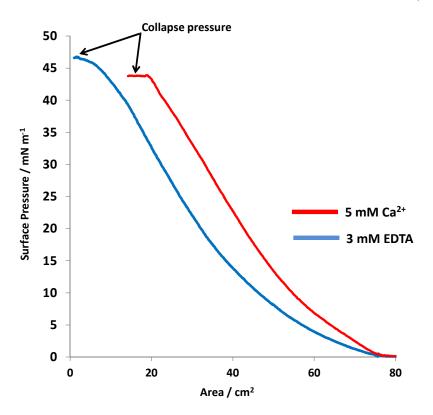


Figure S1, A comparison of the surface pressure vs area isotherms obtained from RaLPS monolayers deposited on liquid surfaces buffered with 20 mM HEPES at pH 7.2 containing either 5mM CaCl2 (red line) or 3 mM EDTA (blue line). The isotherm areas have been normalised so that the area where the initial increase in surface pressure is the same for both samples for ease of comparison.

Parameters obtained from model data fitting of reflectivity profiles obtained from asymmetric DPPC/RaLPS bilayers at the silicon/water interface

Table S1, Summary of known scattering length densities of the lipid components and the solution subphases.

Lipid / Solvent	Neutron scattering length density (ρ) (10 ⁻⁶ Å ⁻²)		
D ₂ O	6.35		
Silicon matched water	2.07		
H ₂ O	-0.56		
Silicon	2.07		
Silicon oxide (SiO ₂)	3.41		
DPPC head group	1.98		
h-DPPC tails	-0.39		
d-DPPC tails	7.45		

Layer	Contrast	Thickness/Å	ρ / ×10 ⁻⁶ Å ⁻²	% Hydration	Roughness/Å
Layer 1 Silicon	N/A	14.6±1.2	3.41 ^{nf}	13.0±2.0	3.0±0.2
Oxide					
Layer 2	d-PC/Ra-LPS in D ₂ O	13.0±0.9	4.1±0.3	N/A	5.5±1.0
Inner head-	d-PC/ Ra-LPS in SMW		2.1±0.3		
group	d-PC/ Ra-LPS in H ₂ O		0.6 ± 1.0		
	h-PC/ Ra-LPS in D ₂ O		4.1±0.3		
	h-PC/ Ra-LPS in SMW		2.1±0.3		
	h-PC/ Ra-LPS in H ₂ O		0.6 ± 1.0		
Layer 3	d-PC/ Ra-LPS	17.0±0.2	$6.0^{A} \pm 0.3$	4.0±4.0	As above
Inner tails	h-PC/ Ra-LPS		-0.39 ^{nf}		
Layer 3	d-PC/ Ra-LPS	14.5±0.7	$0.96^{A} \pm 0.2$	4.0±4.0	As above
Outer tails	h-PC/ Ra-LPS		-0.39 ^{nf}		
Layer 4	d-PC/ Ra-LPS in D ₂ O	31.0±1.0	4.9±0.5	N/A	As above
Outer head-	d-PC/ Ra-LPS in SMW		2.7±0.1		
group	d-PC/ Ra-LPS in H ₂ O		1.0 ± 0.1		
	h-PC/ Ra-LPS in D ₂ O		4.9±0.5		
	h-PC/ Ra-LPS in SMW		2.1±0.1		
	h-PC/ Ra-LPS in H ₂ O		1.0±0.1		

Table S2, Fitting parameters obtained for six isotopic contrast fitting of an asymmetrical 1,2 dipalmitoylhposphatidylcholine (inner leaflet) Ra-LPS (outer leaflet) bilayer in the presence of a solution of 20 mM HEPES pH/D 7.2 5 mM CaCl₂.

A) Value refers to (ρ -($\phi_{water} \times \rho_{water}$) which is fitted simultaneous for H₂O, SMW and D₂O solvent isotopic

contrasts. Nf refers to a non-fitted parameter.

Layer	Contrast	Thickness/Å	ρ / ×10 ⁻⁶ Å ⁻²	% Hydration	Roughness/Å
Layer 1 Silicon	N/A	13.9±5.0	3.41 ^{nf}	Hydration 12.0±2.0	2.9±0.2
Oxide Layer 2 Inner head- group	d-PC/Ra-LPS in D ₂ O d-PC/ Ra-LPS in SMW d-PC/ Ra-LPS in H ₂ O h-PC/ Ra-LPS in D ₂ O h-PC/ Ra-LPS in SMW h-PC/ Ra-LPS in H ₂ O	15.4±4.0	3.6±0.8 2.7±0.4 1.9±0.5 3.6±0.8 2.7±0.4 1.9±0.5	N/A	8.4±1.2
Layer 3 Inner tails	d-PC/ Ra-LPS h-PC/ Ra-LPS	15.9±1.0	$4.5^{A}\pm0.1$ -0.39 ^{nf}	4±0.4	As above
Layer 3 Outer tails	d-PC/ Ra-LPS h-PC/ Ra-LPS	11.0±5.0	2.3 ^A ±0.3 -0.39 ^{nf}	4±4	As above
Layer 4 Outer head- group	d-PC/ Ra-LPS in D ₂ O d-PC/ Ra-LPS in SMW d-PC/ Ra-LPS in H ₂ O h-PC/ Ra-LPS in D ₂ O h-PC/ Ra-LPS in SMW h-PC/ Ra-LPS in H ₂ O	28.4±1.2	5.2±0.6 2.4±0.07 0.9±0.1 5.2±0.6 2.4±0.1 0.9±0.1	N/A	As above

Table S3, Fitting parameters obtained for six isotopic contrast fitting of an asymmetrical 1,2 dipalmitoylhposphatidylcholine (inner leaflet) Ra-LPS (outer leaflet) bilayer in the presence of a solution of 20 mM HEPES pH/D 7.2 3mM EDTA.

A) Value refers to (ρ -($\phi_{water} \times \rho_{water}$) which is fitted simultaneous for H₂O, SMW and D₂O solvent isotopic

contrasts. Nf refers to a non-fitted parameter.

Mixing control measurements.

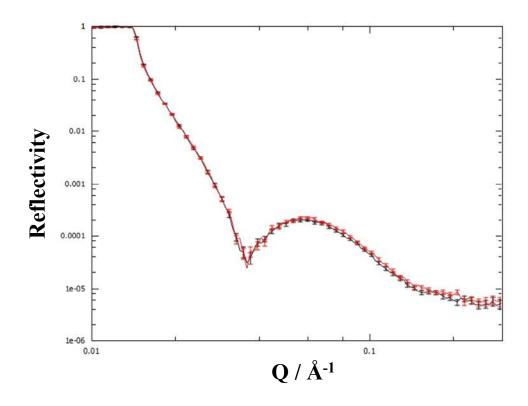


Figure S2, Bilayer mixing control measurements. The experimental neutron reflectometry profiles obtained from an asymmetrically deposited d-DPPC/Ra-LPS bilayer in 20 mM HEPES D₂O buffer at a pD of 7.2 containing 5 mM CaCl₂ after 22.5 ml (red) and 90 ml (black) of solution was passed through the sample cell.

Calculation of RaLPS : Ca²⁺ stoichiometry from X-ray reflectivity data.

Upon addition of EDTA to the Ca^{2+} containing sub-phase, the SLD of the inner headgroups is reduced from 14 x 10⁻⁶ to 13 x 10⁻⁶ Å⁻² with the change attributed to the removal of calcium ions. One can convert the SLD values to electron density [Eqn S1] and therefore calculate the number of calcium ions removed from per RaLPS molecule.

$$\rho_e = \frac{SLD}{r_e}$$
S1

where r_e is the classical electron radius, 2.82 x 10⁻⁵ m, and ρ_e is the electron density, e/Å⁻³. The change in SLD therefore corresponds to a $\Delta \rho_e$ of 0.0355 e/Å³. An area per RaLPS of 128 Å², combined with a layer thickness of 23.5 Å (Table 1) results in a volume of 3008 Å³ per headgroup. A change in ρ_e of 0.036 over this volume corresponds to a reduction of 106.8 electrons per headgroup. Given the atomic number of calcium, 20, this implies that on average there were 5.3 Ca²⁺ ions per headgroup. Using an ionic radius of 118 pm for Ca²⁺, the ionic volume is 2.19 Å³ compared to a volume of 30 Å³ for a single water molecule. We have therefore neglected the impact that the slight increase in the number of water molecules would have on the electron density.