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SUPPLEMENTARY MATERIAL

A. Proofs. In this section, we give proofs of the results stated in Sec-
tion 2 of the main text.

Proof of Proposition 1. We obtain the coefficients b0,n of the initial
vector b0 by projecting ρ(y) onto the basis functions

{
π(y)Bn(y)

}
n∈N0

via
the integral

b0,n =
1

cn

∫ 1

0
ρ(y)π(y)Bn(y)

1

π(y)
dy,(A.1)

with cn given in (2.22) of the main text. Substituting the initial density for
the allele frequency when selection arises, ρ(y) = δ(x− y), into (A.1) yields

b0,n =
Bn(x)

cn
,

thus proving the statement of the proposition.

Proof of Theorem 2. The spectral decomposition of the transition
density function of the Wright-Fisher diffusion generator given in (2.16)
can be written in matrix-vector notation as
(A.2)

pΘ(τ ;x, y) =

∞∑
n=0

e−λnτπ(y)
Bn(x)Bn(y)

〈Bn, Bn〉π
= BT (x)D−1 exp

{
−Λτ

}
π(y)B(y),

where B(y) is the vector notation for the eigenfunctions Bn(y) defined in
(2.21) of the main text, D = diag

(
c0, c1, . . .

)
is the diagonal matrix of

the squared norms of the eigenfunctions Bn(y) with entries given in (2.22),
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and Λ is the diagonal matrix of eigenvalues of the Wright-Fisher diffusion
generator L.

Substituting (2.17), (2.18) and (A.2) into the recurrence (2.7) relating gk
and fk−1 yields

akπ(yk)B(yk) =

∫ 1

0
bk−1π(yk−1)B(yk−1)BT (yk−1)D−1dyk−1×

exp
{
−Λ(τk − τk−1)

}
π(yk)B(yk)

= bk−1 exp
{
−Λ(τk − τk−1)

}
π(yk)B(yk),

where in the second equality, we used the fact that

(A.3)

∫ 1

0
π(y)B(y)BT (y)dy = D.

Equation (A.3) holds because the eigenfunctions Bn(y) form an orthogonal
basis with respect to π(y). This proves equation (2.23) in Theorem 2.

Letting H(Θ)(y) := (H
(Θ)
0 (y), H

(Θ)
1 (y), . . .)T denote the column vector

of the functions
{
H

(Θ)
m (y)

}
m∈N0

given in (2.12), the representation of the

eigenfunctions Bn(y) given in (2.15) can be written in matrix-vector notation
as

B(y) = WH(Θ)(y),(A.4)

where W is the matrix whose rows are formed from the eigenvectors of the
matrix M given in (2.14). Substituting (A.4), (2.17), and (2.18) into the
recurrence (2.8) relating fk and gk, we have

bkπ(yk)B(yk) = akπ(yk)B(yk)y
dk
k (1− yk)nk−dk

= akWH(Θ)(yk)π(yk)y
dk
k (1− yk)nk−dk

= akWdiag
(
ydkk (1− yk)nk−dk

)
H(Θ)(yk)π(yk)

= akWGdk(1−G)nk−dkH(Θ)(yk)π(yk)

= akWGdk(1−G)nk−dkW−1B(y)π(yk).(A.5)

In (A.5), diag(y) denotes the matrix
(
y · δn,m

)
n,m∈N0

, where the Kronecker-
delta δn,m is 1 if n = m and 0 otherwise. Furthermore, we used the fact
that the three-term recurrence relation for the Jacobi polynomials in (B.4)
implies the matrix-vector identity diag(y)H(Θ)(y) = GH(Θ)(y) with G =(
G

(α,β)
n,m

)
n,m∈N0

denoting the matrix of coefficients of the three-term recur-

rence. This proves (2.24) in Theorem 2.
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The matrix W is an orthogonal matrix up to scaling of its rows and
columns. In particular, substituting (A.4) into the orthogonality relation
(A.3) for the eigenfunctions Bn(y), we have

D =

∫ 1

0
π(y)B(y)BT (y)dy

=

∫ 1

0
π(y)WH(Θ)(y)H(Θ)T (y)W Tdy

= W

(∫ 1

0
π(y)H(Θ)(y)H(Θ)T (y)dy

)
W T

= W

(∫ 1

0
π(y)e−σ̄(y)R(α,β)(y)R(α,β)T (y)dy

)
W T

= W

(∫ 1

0
yα−1(1− y)β−1R(α,β)(y)R(α,β)T (y)dy

)
W T

= WCW T ,(A.6)

where R(α,β)(y) :=
(
R

(α,β)
0 (y), R

(α,β)
1 (y), . . .

)
, the fourth equality follows

from definition (2.12), the fifth follows from definition (2.13), and the last
follows from the definition of C. Equation (A.6) implies (2.25) of Theorem 2.

Proof of Proposition 3. Substituting the representation for the den-
sities fk in (2.17) into (2.9) yields

PΘ{O[1:K]} =

∫ 1

0

∞∑
n=0

bK,nBn(y)π(y)dy

=
1

B0(0)

∫ 1

0

∞∑
n=0

bK,nB0(y)Bn(y)π(y)dy

=
c0

B0(0)
bK,0,

where we have used B0(y) ≡ B0(0) (see Section D) and the orthogonality of
the eigenfunctions Bn(y) with respect to π(y). Using (2.15) along with the

fact that R
(α,β)
m (0) = (−1)m Γ(m+α)

Γ(m+1)Γ(α) , we have the following expression for

B0(0),

(A.7) B0(0) =

∞∑
m=0

(−1)mw0,m
Γ(m+ α)

Γ(m+ 1)Γ(α)
,

which completes the proof.
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B. Jacobi polynomials. We briefly list some facts about our modified
Jacobi polynomials and their relationship to the classical Jacobi polynomials
[1, Chapter 22]. For α, β > 0, we define the modified Jacobi polynomials

R
(α,β)
n (x) by

R(α,β)
n (x) := p(β−1,α−1)

n (2x− 1),

where p
(a,b)
n (x) are the classical Jacobi polynomials. The polynomialsR

(α,β)
n (x)

form an orthogonal basis of the Hilbert space L2
(
[0, 1], xα−1(1−x)β−1

)
with

the weight function xα−1(1− x)β−1. In particular

(B.1)

∫ 1

0
R(α,β)
n (x)R(α,β)

m (x)xα−1(1− x)β−1dx = c(α,β)
n δn,m

where c
(α,β)
n is given by

(B.2) c(α,β)
n =

Γ(n+ α)Γ(n+ β)

(2n+ α+ β − 1)Γ(n+ α+ β − 1)Γ(n+ 1)
.

Further, R
(α,β)
n are the eigenfunctions of the neutral Wright-Fisher diffusion

generator L0 given in (2.11). Thus

L0R
(α,β)
n (x) = −λ(α,β)

n R(α,β)
n (x),

where λ
(α,β)
n is the eigenvalue for the eigenfunction R

(α,β)
n and is given by

(B.3) λ(α,β)
n =

1

2
n(n+ α+ β − 1).

Finally, the Jacobi polynomials satisfy the three-term recurrence relation

(B.4) x R(α,β)
n (x) = G

(α,β)
n,n−1R

(α,β)
n−1 (x) +G(α,β)

n,n R(α,β)
n (x) +G

(α,β)
n,n+1R

(α,β)
n+1 (x),

where the coefficients G
(α,β)
n,m are given by

(B.5) G(α,β)
n,m =



(n+α−1)(n+β−1)
(2n+α+β−1)(2n+α+β−2) , if m = n− 1 and n > 0,

1
2 −

β2−α2−2(β−α)
2(2n+α+β)(2n+α+β−2) , if m = n and n ≥ 0,

(n+1)(n+α+β−1)
2(2n+α+β)(2n+α+β−1) , if m = n+ 1 and n ≥ 0,

0, otherwise.
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C. Coefficients to compute the matrix M . With the parameters
Θ = (σ1, σ2, α, β, τ0, Ne), the coefficients in the definition of the matrix M
in equation (2.14) are given by

q
(Θ)
0 = ασ1,

q
(Θ)
1 = −(2 + 3α+ β − 2σ1)σ1 + (1 + α)σ2,

q
(Θ)
2 = −10σ2

1 − (1 + α+ β)σ2 + (2 + 2α+ 2β + 4σ2)σ1,

q
(Θ)
3 = 16σ2

1 − 12σ1σ2 + 2σ2
2,

q
(Θ)
4 = −2(σ2 − 2σ1)2.

D. Initial allele frequency density. As mentioned in Section 2, it
is also possible to use other density functions for the allele frequency at
the time when selection arises. For example, suppose this initial density
function is the stationary distribution describing mutation-selection balance.
In order to compute the coefficients in Proposition 1, we will need to compute
the normalizing constant to make π(y) a probability density function. This
constant is given by

Cπ =

∫ 1

0
π(y)dy =

1(
B0(0)

)2 ∫ 1

0

(
B0(y)

)2
π(y)dy =

c0(
B0(0)

)2 .
Here we used the fact that the eigenfunction associated to the eigenvalue
λ0 = 0 is a constant function, and thus its value B0(y) ≡ B0(0) is inde-
pendent of y. This holds since it is straightforward to show that the dif-
ferential operator L annihilates any constant C. We can then substitute
ρ(y) = C−1

π π(y) into the projection integral (A.1) to get

b0,n =
1

cn

∫ 1

0
C−1
π π(y)π(y)Bn(y)

1

π(y)
dy

=
B0(0)

cnc0

∫ 1

0
B0(y)Bn(y)π(y)dy

=
B0(0)

c0
δn,0.

Thus, for this initial distribution, all b0,n are zero, except the coefficient for
n = 0 is equal to B0(0)/c0. The value of B0(0) is given in (A.7).

Another initial density function for the allele frequency is the case of
mutation-drift balance, which describes the stationary distribution of the
allele frequency in the case of neutral evolution. In particular,

(D.1) π0(y) =
1

B(α, β)
yα−1(1− y)β−1,
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where B(α, β) is the Beta function. Again, we obtain the coefficients b0,n
of the initial vector of coefficients in Proposition 1 by projecting the initial
density ρ(y) = π0(y) onto the basis functions

{
π(y)Bn(y)

}
n∈N0

. Substituting

(D.1) into (A.1) and using the basis representation of the eigenfunctions
Bn(y) given in (2.15) yields

b0,n =
1

cnB(α, β)

∫ 1

0
yα−1(1− y)β−1

∞∑
m=0

wn,me
−σ̄(y)/2R(α,β)

m (y)dy.(D.2)

Further, from (2.15) we have

(D.3) e−σ̄(y)/2 =
1

B−0 (0)

∞∑
m=0

w−0,mR
(α,β)
m (y),

where w−0,m denote the entries of the eigenvector w−0 obtained from the

matrix in (2.14) with σ1 and σ2 replaced by −σ1 and −σ2 respectively, B−0 (y)
denotes the corresponding eigenfunction, and σ̄−(y) = −σ̄(y). Substituting
(D.3) into (D.2) and using the orthogonality of the Jacobi polynomials given
in (B.1) yields

b0,n =
1

cnB(α, β)B−0 (0)

∞∑
m=0

wn,mw
−
0,mc

(α,β)
m .
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