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We develop a kinetic model for the regulation of the expression of tar as a function of the total
concentrations of FliA and FlgM (see Figure 1 in main text). The model is based on a quasi-equilibrium
approximation of the mass-action kinetics for the formation of the FliA·FlgM complex, and a phenomeno-
logical Hill-type regulatory law of tar expression by free FliA.

Let pA,free, pM,free and pAM denote the concentrations of free FliA, free FlgM and FliA·FlgM, in
that order, and let pA, pM denote total concentrations of FliA and FlgM. Assuming complex forma-
tion and dissociation are fast events relative to gene expression and protein degradation, we make the
approximation

d

dt
pAM = k+pA,free · pM,free − k−pAM = 0,

with k− > 0 and k+ > 0. Using the facts that pA = pA,free +pAM and pM = pM,free +pAM , substitution
into the above to eliminate pM,free and pAM from the equation yields

k+pA,free ·
(
pM − (pA − pA,free)

)
− k−(pA − pA,free) = 0,

which is a second-order polynomial equation in pA,free. The solution of the equation that satisfies
0 ≤ pA,free ≤ pA is

pA,free(pA, pM ) =
1

2

(√
(K + pM − pA)2 + 4KpA − (K + pM − pA)

)
,

with K = k−/k+, which is a function of the concentrations pA and pM . In accordance with Figure 1 of
the main text, only the free FliA molecules regulate the expression of ptar, and we quantify the regulatory
effect by the law

pnA,free

pnA,free + θn
,

with n ≥ 1. Multiplying by maximal synthesis rate k1 and adding basal (unregulated) synthesis rate k0
leads to model Eq. 1- 2 in the main text.

Note that, in accordance with the expected regulatory pattern, the function

k0 + k1 ·
pnA,free(pA, pM )

pnA,free(pA, pM ) + θn

aThis text contains supplementary information for the paper “Inference of quantitative models of bacterial promoters
from time-series reporter gene data”.
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is increasing in pA and decreasing in pM . To verify this, it suffices to show that derivatives with respect to
pA and pM are nonnegative and nonpositive, respectively. Ignoring k0 and k1 without loss of generality,
the derivative of pA,free with respect to pA can be written as

1

2
+

1

2
· −(pM − pA +K) + 2K√

(pM − pA +K)2 + 4KpA
.

This expression is obviously positive if pM − pA + K ≤ 0. If instead pM − pA + K > 0, note that the
expression is still positive if the square of the fraction,(

(pM − pA +K) − 2K
)2

(pM − pA +K)2 + 4KpA
,

is smaller than 1. But this is apparent since, under pM − pA + K > 0, the numerator is no bigger than
(pM − pA +K)2, whereas the denominator is no smaller than the same quantity. Similarly, the derivative
of pA,free with respect to pM can be written as

−1

2
+

1

2
· pM − pA +K√

(pM − pA +K)2 + 4KpA
.

This expression is obviously negative if (pM − pA +K) ≤ 0. If instead (pM − pA +K) > 0, note that the
square root is no smaller than (pM − pA +K), hence the rightmost fraction is no bigger than 1, i.e. the
overall expression is again negative.

The additional regulatory effect of global physiological effects is quantified via further multiplication
by a function fconst(t), as in the Results section of the main text. Monotonicity with respect to pA and
pM remains unchanged. In addition, f is increasing in fconst . In all cases, the model depends on the
(nonnegative) parameters k0, k1, n, θ,K.
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