Toward a Robust Computational Screening Strategy for Identifying Glycosaminoglycan

Sequences that Display High Specificity for Target Proteins

Nehru Viji Sankaranarayanan and Umesh R. Desai*

Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery Virginia Commonwealth University, Richmond, VA 23219

*Address for correspondence: Dr. Umesh R. Desai, 800 E. Leigh Street, Suite 212, Richmond, VA 23219. Ph (804) 828-7328; Fax (804) 827-3664; <u>urdesai@vcu.edu</u>

SUPPLEMENTARY MATERIAL

Table of contents	Page
Table S1: H/HS hexasaccharide sequences used for algorithm optimization procedure	S2
Table S2: H/HS tetrasaccharide sequences from two libraries of 1,444 sequences each	
that satisfied the dual filter CVLS strategy	S3
Table S3: H/HS disaccharide sequences from two libraries of 38 sequences each that	
satisfied the CVLS strategy	S4
Figure S1: CVLS predicted tetrasaccharide sequences	S5
Figure S2: CVLS predicted octasaccharide sequences	S6

Table S1. H/HS hexasaccharide sequences used for algorithm optimization procedure. $(G_{DEF}, G_{EFG} and G_{FGH}$ hexasaccharide sequences contain DEF, EFG and FGH structures, respectively, of the
DEFGH pentasaccharide; G_{USU} sequences contain fewer sulfate group in comparison to G_{DEF} , while G_{SSS}
sequences contain more sulfate groups.)

	Hexasaccharide sequences	No. of OSO ₃ ⁻		Hexasaccharide sequences	No. of OSO₃ ⁻
The G	DEF group				
1	ua2A-YbC6A-ZbB-Yb236A-uc2A-YbH36A	8	33	ucA-YbCA-ZbB-Yb236A-uc2A-Yb26A	6
2	uaA-YbC6A-ZbB-Yb236A-uaA-Yb23A	5	34	Zb2B-Yb2A-uaA-Yb236A-uc2A-Yb26A	8
3	uaA-YbC6A-ZbB-Yb236A-ZbB-YbCA	4	35	ZbB-Yb23A-ucA-Yb236A-uc2A-Yb26A	8
4	uc2A-YbC6A-ZbB-Yb236A-ucA-YbC6A	6	36	ZbB-Yb2A-ZbB-Yb236A-uc2A-Yb26A	7
5	ucA-YbC6A-ZbB-Yb236A-uc2A-Yb26A	7	37	ua2A-Yb23A-uaA-Yb236A-uc2A-Yb26A	9
6	ZbB-YbC6A-ZbB-Yb236A-ua2A-YbCA	5	38	ua2A-Yb2A-ucA-Yb236A-uc2A-Yb26A	8
7	ua2A-Yb26A-ZbB-Yb236A-ua2A-Yb23A	9	39	ua2A-YbCA-ZbB-Yb236A-uc2A-Yb26A	7
8	ua2A-Yb26A-ZbB-Yb236A-Zb2B-Yb23A	9	40	uaA-Yb236A-uaA-Yb236A-uc2A-Yb26A	9
9	uaA-Yb26A-ZbB-Yb236A-uc2A-YbC6A	7	41	uaA-Yb26A-ucA-Yb236A-uc2A-Yb26A	8
10	uc2A-Yb26A-ZbB-Yb236A-ua2A-YbH3A	8	42	uaA-YbC6A-ZbB-Yb236A-uc2A-Yb26A	7
11	uc2A-Yb26A-ZbB-Yb236A-ZbB-Yb2A	7	43	uc2A-Yb26A-uaA-Yb236A-uc2A-Yb26A	9
12	ucA-Yb26A-ZbB-Yb236A-ucA-Yb26A	7	44	uc2A-YbC6A-ucA-Yb236A-uc2A-Yb26A	8
13	Zb2B-Yb26A-ZbB-Yb236A-uaA-YbCA	6	45	uc2A-YbH36A-ZbB-Yb236A-uc2A-Yb26A	9
14	ZbB-Yb26A-ZbB-Yb236A-ua2A-Yb2A	7	The G	usu group	
15	ZbB-Yb26A-ZbB-Yb236A-Zb2B-Yb2A	7	46	ZbB-YbCA-ZbB-Yb2A-uc2A-YbH36A	4
The G	erg group		47	ZbB-YbHA-ZbB-YbHA-ZbB-YbHA	0
16	ucA-Yb23A-ZbB-Yb236A-uc2A-YbH3A	7	48	ZbB-YbHA-ZbB-YbHA-ZbB-YbC6A	1
17	ucA-YbC6A-ZbB-Yb236A-uc2A-Yb2A	6	49	ZbB-YbHA-ZbB-YbCA-ZbB-YbHA	0
18	Zb2B-Yb23A-ZbB-Yb236A-uc2A-YbH36A	9	50	ZbB-YbHA-ZbB-YbC6A-ZbB-YbHA	0
19	ZbB-Yb236A-ZbB-Yb236A-uc2A-Yb26A	9	51	ZbB-YbHA-ZbB-Yb2A-ZbB-YbHA	1
20	ZbB-Yb26A-ZbB-Yb236A-uc2A-YbCA	6	52	ZbB-YbCA-ZbB-YbHA-ZbB-YbHA	0
21	ZbB-YbCA-ZbB-Yb236A-uc2A-Yb23A	6	53	ZbB-YbCA-ZbB-YbCA-ZbB-Yb236A	3
22	ua2A-Yb23A-ZbB-Yb236A-uc2A-Yb23A	9	54	ZbB-YbCA-ZbB-YbC6A-Zb2B-Yb26A	4
23	ua2A-Yb2A-ZbB-Yb236A-uc2A-YbC6A	7	55	ZbB-YbCA-ZbB-YbC6A-ZbB-Yb26A	3
24	ua2A-YbCA-ZbB-Yb236A-uc2A-YbH3A	6	The G _s	ss group	
25	uaA-Yb236A-ZbB-Yb236A-uc2A-Yb2A	8	56	uc2A-YbH36A-uc2A-YbC6A-ZbB-Yb236A	8
26	uaA-Yb26A-ZbB-Yb236A-uc2A-YbH36A	8	57	ZbB-Yb236A-ZbB-Yb236A-ua2A-Yb23A	9
27	uaA-YbCA-ZbB-Yb236A-uc2A-Yb26A	6	58	ZbB-Yb236A-Zb2B-Yb2A-uaA-YbCA	5
28	uc2A-Yb26A-ZbB-Yb236A-uc2A-YbCA	7	59	ZbB-Yb236A-Zb2B-Yb26A-ZbB-Yb236A	9
29	uc2A-YbCA-ZbB-Yb236A-uc2A-Yb23A	7	60	ZbB-Yb236A-ucA-Yb236A-ZbB-Yb236A	9
30	uc2A-YbH3A-ZbB-Yb236A-uc2A-YbC6A	7	61	ZbB-Yb236A-ucA-Yb236A-uc2A-YbH36A	9
The G	_{=GH} group		62	ZbB-Yb236A-uc2A-YbH36A-ua2A-YbH36A	9
31	ucA-Yb23A-uaA-Yb236A-uc2A-Yb26A	8	63	Zb2B-Yb26A-uc2A-Yb26A-Zb2B-Yb26A	9
32	ucA-Yb2A-ucA-Yb236A-uc2A-Yb26A	7	64	Zb2B-Yb23A-uc2A-Yb26A-Zb2B-Yb23A	9
			65	ucA-YbC6A-ZbB-Yb2A-uaA-Yb236A	5

#	Tetrasaccharide Sequence ^a	GoldScore ^b	# of H-bonds ^c
UA _{NRE} Lik	orary		
1	uc2A-Yb236A-ZbB-Yb23A	110.49	11
2	ua2A-Yb26A-Zb2B-Yb23A	110.32	9
3	uaA-Yb26A-Zb2B-Yb23A	110.10	9
4	ucA-Yb26A-Zb2B-Yb23A	107.53	10
5	ua2A-YbC6A-ZbB-Yb236A	107.14	10
6	uc2A-Yb26A-Zb2B-Yb23A	106.26	11
7	uc2A-YbC6A-ZbB-Yb23A	103.92	12
8	ua2A-YbC6A-Zb2B-Yb23A	103.76	10
9	ucA-YbC6A-Zb2B-Yb23A	103.60	10
10	ucA-YbC6A-ZbB-Yb23A	103.15	11
11	ua2A-YbH36A-ZbB-Yb236A	101.79	8
12	uc2A-YbH36A-ucA-Yb26A	101.03	13
13	ZbB-Yb236A-ZbB-Yb236A	100.96	10
14	ZbB-Yb26A-ZbB-Yb236A	100.16	11
	ibrary		
1	Yb26A-ZbB-Yb23A-ZbB	116.96	12
2	Yb26A-ZbB-Yb236A-ZbB	110.41	11
3	YbC6A-ZbB-Yb23A-Zb2B	110.40	11
4	YbC6A-ZbB-Yb236A-ucA	109.82	14
5	YbC6A-ZbB-Yb236A-uc2A	108.51	11
6	YbC6A-ZbB-Yb236A-ZbB	107.56	10
7	Yb26A-ZbB-Yb23A-ucA	106.62	16
8	Yb2A-ZbB-Yb23A-uc2A	105.39	10
9	Yb26A-ZbB-YbH3A-uc2A	104.26	10
10	Yb2A-Zb2B-Yb236A-uc2A	103.75	9
11	Yb23A-ZbB-Yb23A-uc2A	103.41	10
12	Yb23A-ZbB-Yb23A-ucA	103.01	12
13	Yb23A-Zb2B-Yb236A-uc2A	102.62	12
14	Yb26A-Zb2B-Yb236A-ZbB	99.28	11
15	YbC6A-ZbB-Yb23A-uc2A	98.38	11
16	YbCA-ZbB-Yb23A-uc2A	97.68	9

 Table S2.
 H/HS tetrasaccharide sequences from two libraries of 1,444 sequences each that satisfied the dual filter CVLS strategy.

^aSee definitions of residue labels and substitution in Table 1. ^bRefers to modified GoldScore, as defined in the Methods section. ^cNumber of hydrogen bonds calculated using LIGPLOT.

#	Disaccharide Sequence ^a	Gold Score ^b	# of H-bonds ^c	
GlcN _{NRE} Library				
	None			
UA _{NRE} Library				
1	Zb2B-Yb23A	71.18	8	
2	ZbB-Yb236A	67.22	7	
3	ZbB-Yb23A	68.58	8	

 Table S3.
 H/HS disaccharide sequences from two libraries of 38 sequences each that satisfied the CVLS strategy.

^aSee definitions of residue labels and substitution in Table 1. ^bRefers to modified GoldScore, as defined in the Methods section. ^cNumber of hydrogen bonds calculated using LIGPLOT.

Figure S1. CVLS predicted tetrasaccharide sequences from the $GlcN_{NRE}$ (A) and UA_{NRE} libraries (B) containing 1,444 sequences each. Shown are overlays of the docked poses of tetrasaccharide sequences that bind AT with 'high specificity' by satisfying the dual filter strategy. A) shows 16 sequences (blue sticks) from the $GlcN_{NRE}$ library and B) shows 14 sequences (blue sticks) from UA_{NRE} tetrasaccharide library. Helices A (hA), D (hD) and P (hP) of antithrombin are shown in ribbon form and residues Arg132, Arg129, Lys125 and Arg114 are shown in ball and stick display. The crystal structure of DEFGH in green ball and sticks display is shown to highlight correspondence with the CVLS predicted poses.

Figure S2. CVLS predicted octasaccharide sequences from the UA_{NRE}. Six sequences satisfied the CVLS dual filter criteria. Helices A (hA), D (hD) and P (hP) of antithrombin are shown in ribbon form and residues Arg132, Arg129, Lys125 and Arg114 are shown in ball and stick display. The crystal structure of DEFGH in green ball and sticks display is shown to highlight correspondence with the CVLS predicted poses.