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Supplementary Notes

The distribution of k-mers (DNA words of length k) in sequencing data can provide a unique view of the complexity and
quality. It has been shown that features that occur too often or too rarely reflect crucial information about the functional and
structural elements of the genome of the sequenced species (1-5). Thus, the number of overrepresented sequence motifs does
not disappear by increasing the k size. Many studies have shown the unimodality of the genomic k-mer spectra of most species
with the exception of mammalians (1). All mammalians exhibit a multimodal distribution of k-mer frequencies. This feature
highlights the existence of common and extremely rare features that reflect the complexity of the genome in question. The
multimodality of the k-mer spectrum is independent of the genome size. Chor et al. (1) have shown that while the genome of T.
thermophila has a comparable size (97Mb) to that of the human chromosome 12 (108Mb), the k-mer spectra differ in modality
(unimodal and multimodal, respectively). The modality of the human genome is also subjected its function. Strikingly, all
coding regions, including the 5’ un-translated regions (UTRs) exhibit a unimodal k-mer spectrum while the introns, 3’ UTRs
and other intergenic regions hold a multimodal distribution (1,3). Moreover, the composition of k-mers in the spectrum is
context-specific. Nullomers (missing k-mers) and rare k-mers tend to be GC-rich and often contain many CpGs (1,5). This is
caused by the hypermutability of CpGs (C — T and G — A; also known as CpG suppression) that mutate at 10-20 times higher
rate than other types of point mutations (5-8). In this work, we present the utility of k-mer spectrum in determining the
quality and complexity of next-generation sequencing data that relies on shared and unique features across species as shown
for estimating the level of relatedness between microbiomes.

kMer Methodology

Index

The first step in any k-mer analysis is the generation of a profile (Figure 1A), which is constructed by the indexing algorithm.
The efficiency of the algorithm is improved by encoding the DNA string in binary following the map given in Figure 1B.
Subsequently, the binary encoded k-mers are used as the index of a count table. This can be achieved by the concatenation of
the binary code for each nucleotide in a given DNA string. This procedure eliminates the need to store the actual k-mer
sequences since they can be retrieved from decoding the offset in the count table. The binary code for each nucleotide is
chosen in such a way that the complement of the nucleotide can be calculated using the binary NOT operator. The indexing
algorithm returns a profile that holds observed counts for all possible substrings of length k that can be stored for other
analyses.

Distance (diff)

Since the k-mer profile is in essence a vector of almost independent values, we can use any metric defined for vectors to
calculate the distance between two profiles. We have implemented two metrics which are the standard Euclidian distance
measure and the multiset (9) distance measure (see Formula 1). The last metric is parameterised by a function that reflects the
difference between a pair. We have implemented two pairwise distance functions (shown in Formulae 2 and 3).

For a multiset X, let S(X) denote its underlying set. For multisets X, Y with S(X), S(Y) € {1, 2, ..., n} we define:

(1)
do = =1 f (i )
I 7S us(n) +1
(2) Pairwise function:
lx =yl
filx,y) = m
(3) Pairwise function:
lx =yl
Lo =T

Balance (showbalance)

When analysing sequencing data, which frequently consist of reads from both strands (e.g., due to non strand-specific sample
preparation or paired-end sequencing), we can assume that the chance of observing a fragment originating from the plus and
minus strands are equal. Additionally, if the sequencing depth is high enough, we expect a balance between the frequencies of
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k-mers and their reverse complement in a given k-mer profile. Every type of NGS data has an expected balance (i.e., SAGE is
not expected to produce a balanced profile while whole genome shotgun sequencing is expected to have a perfectly balanced
frequency between k-mers and their reverse complement). Thus, k-mer balance can indicate the quality of NGS data in respect
to over-amplification, insufficient number of reads, or poor capture performance in the case of whole exome sequencing.

To calculate the balance, first we observe that every k-mer has a reverse complement. One of these is lexicographically smaller
(or equal in the case of a palindrome) than the other. We first split a profile into two vectors, A = (ay,a4,...) and B =
(bg, by, ...) where b; represents the reverse complement of a¢; and vice versa. The distance between these vectors can be
calculated in the same way as described for pairwise comparison of two full k-mer profiles (Figure 1C).

Additionally, kMer can forcefully balance the k-mer profiles (if desired) by adding the values of each k-mer to its reverse
complement. This procedure can improve distance calculation if the sequencing depth is too low.

Shrink

A profile indexed at a certain k size contains information about k-mers of smaller lengths. This can be seen from the fact that a
word w over an alphabet A has |A| possible suffixes of length one. To calculate the number of occurrences of wr, we simply
need to calculate the },; ¢ 4 count(w . i). This only holds when k is relatively small compared to the length of the indexed
sequencing reads. Indeed, if a sequence of length £ is indexed at length k, then (£ — k + 1) k-mers are encountered per
sequence. However, shrinking of a profile will yield (¥ — k) k-mers. Usually, this border effect is small enough to ignore, but
should be taken into consideration when indexing large amounts of small (approaching length k) sequences. Shrinking is
useful when trying to estimate the best k for a particular purpose. One can start with choosing a relatively large k and then
reuse the generated profile to construct a profile of smaller k sizes (Figure 1D).

Smoothing

Ideally, the samples that are used to generate profiles are sequenced with the same sample preparation, on the same platform,
and most importantly at sufficient depth. However, in practice, this is rarely the case. When two similar samples are sequenced
at insufficient depth, it will be reflected in a k-mer profile by zero counts for k-mers that are not expected to be nullomers.
While this is not a problem in itself, the fact that most sequencing procedures have a random selection of sequencing
fragments will result in a random distribution of these zero counts. When comparing two profiles, the pairwise distances will
be artificially large. Scaling the profiles can partially compensate for differences in the sequencing depth but can not account
for nullomers since no distinction can be made between true missing words and artificially missing words. An obvious solution
would be to shrink the profile until nullomers are removed. This method is valid as long as all zero counts reflect artificial
nullomers. Otherwise, shrinking will reduce the specificity and does not reflect the true complexity of the sequenced genome.
To deal with this problem, we have developed the pairwise smoothing function. This method locally shrinks a profile only
when necessary. In this way, we retain information if it is available in both profiles and discard missing data (Figure 1E).

Let P and Q be sub-profiles of words over an alphabet A of length ¢ (with £ devidable by |A|). Let t be a user-defined
threshold and let fbe a method of summarizing a profile. If min(f(P),f(Q)) > t we divide the profiles in |A| equal parts and
recursively repeat the procedure for each part. If this is not the case, we collapse both P and Q to one word. Implemented
methods of summarizing are minimum, mean, and median. In Figure 1E we show an example of how smoothing might work.
We have chosen f= min and t = 0 as default parameters. With this method, we can index a dataset with a large k and retain the
overall specificity of the profile since this method can automatically select the optimal choice of k locally.

Below, we provide an overview of all functions of kMer that are available via the command line interface:

Function Description

index Make a profile from a FASTA file

merge Merge two profiles

balance Balance a profile on the frequency of k-mers and their reverse complements
showbalance Calculate the balance of a profile

meanstd Show the mean and standard deviation of k-mer frequencies

distr Calculate the distribution of the frequencies in a profile

info Print basic statistics on a given profile

getcount Retrieve the count for a particular k-mer

positive Only keep counts that are positive in both profiles

scale Scale profiles such that the total number of k-mer frequencies is equal
shrink Shrink a profile, effectively educing k size

shuffle Randomise a profile

smooth Smooth two profiles by collapsing sub-profiles

diff Calculate the distance between two profiles

matrix Make a pairwise distance matrix for a series of k-mer profiles
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Supplementary Table 1 - An overview and basic statistics on NGS data.

ID Protocol Code Total Reads Alignment (%) Duplication (%) Prop. Pairs (%) Discordant (%) On Target (%)

Whole Genome Sequencing (WGS) data

FG1_F4L1_P2 Protocol 2 446654194 99.88 2.85 95.85 2.04 NA
FG1_F4L2_P2 Protocol 2 243872592 99.87 2.01 95.89 2.03 NA
FG1_F1L1_P1 Protocol 1 117691658 99.59 2.27 83.41 13.53 NA
FG1_F1L2_P1 Protocol 1 122955824 99.59 2.35 83.38 13.56 NA
FG1_F1L3_P1 Protocol 1 108288914 99.59 211 83.45 13.50 NA
FG2_F4L2_P2 Protocol 2 199745404 99.87 1.85 95.07 2.69 NA
FG2_F4L3_P2 Protocol 2 411392680 99.87 3.00 95.03 2.71 NA
FG2_F1L4_P1 Protocol 1 129056860 99.61 1.84 85.26 11.89 NA
FG2_F1L5_P1 Protocol 1 127011660 99.63 1.81 85.28 11.87 NA
FG2_F1L6_P1 Protocol 1 132618524 99.63 1.87 85.27 11.89 NA
FG3_F1L7_P1 Protocol 1 118035394 99.56 1.94 84.18 12.84 NA
FG3_F1L8_P1 Protocol 1 122261090 99.60 2.03 84.24 12.81 NA
FG3_F4L4_P2 Protocol 2 428887478 99.88 2.89 96.09 1.71 NA
FG4_F2L2_P1 Protocol 1 129062580 99.72 1.74 87.46 9.93 NA
FG4_F2L3_P1 Protocol 1 123029712 99.70 1.69 87.46 9.92 NA
FG4_F2L4_P1 Protocol 1 122774394 99.67 1.70 87.39 9.90 NA
FG4_F2L2_P2 Protocol 2 288710022 99.86 2.30 95.40 2.04 NA
FG4_F2L3_P2 Protocol 2 280581930 99.86 2.27 95.39 2.05 NA
FG4_F2L4_P2 Protocol 2 270864574 99.85 2.25 95.38 2.04 NA
FG5_F2L5_P2 Protocol 2 285364738 99.87 1.90 96.53 1.59 NA
FG5_F2L6_P2 Protocol 2 275417304 99.86 1.87 96.47 1.61 NA
FG5_F2L7_P2 Protocol 2 279423494 99.86 1.93 96.49 1.59 NA
FG5_F2L5_P1 Protocol 1 133079914 99.76 1.84 91.87 5.95 NA
FG5_F2L6_P1 Protocol 1 129077350 99.76 1.82 91.82 5.98 NA
FG5_F2L7_P1 Protocol 1 131237400 99.75 1.83 91.89 591 NA
FG6_F3L1_P2 Protocol 2 296508646 99.71 2.58 95.25 2.56 NA
FG6_F3L2_P2 Protocol 2 286834464 99.70 2.54 95.25 2.56 NA
FG6_F2L8_P2 Protocol 2 271555116 99.85 2.52 95.44 2.52 NA
FG6_F3L1_P1 Protocol 1 65996740 99.23 1.68 87.50 9.59 NA
FG6_F3L2_P1 Protocol 1 65390164 99.14 1.67 87.41 9.60 NA
FG6_F2L8_P1 Protocol 1 63421100 99.69 1.66 87.91 9.64 NA
FG7_F3L3_P2 Protocol 2 302013082 99.82 2.19 96.18 1.81 NA
FG7_F3L4_P2 Protocol 2 295235714 99.82 2.16 96.18 1.81 NA
FG7_F3L5_P2 Protocol 2 303851942 99.83 2.18 96.20 1.81 NA
FG7_F3L3_P1 Protocol 1 108774848 99.56 1.83 81.72 15.32 NA
FG7_F3L4_P1 Protocol 1 107269844 99.56 1.81 81.70 15.34 NA
FG7_F3L5_P1 Protocol 1 109243670 99.58 1.83 81.75 15.30 NA
FG8_F3L6_P2 Protocol 2 243965640 99.80 1.68 95.97 2.13 NA
FG8_F3L7_P2 Protocol 2 278758454 99.80 1.82 95.96 2.13 NA
FG8_F3L8_P2 Protocol 2 287101398 99.79 1.84 95.96 2.12 NA
FG8_F3L6_P1 Protocol 1 64415080 99.61 1.07 87.47 9.99 NA
FG8_F3L7_P1 Protocol 1 73986900 99.60 1.19 87.44 10.00 NA
FG8_F3L8_P1 Protocol 1 75888242 99.54 1.21 87.43 9.98 NA
FG9_F5L5_P2 Protocol 2 234767462 99.84 1.96 95.98 1.84 NA
FG9_F5L6_P2 Protocol 2 236372176 99.83 1.97 95.98 1.84 NA
FG9_F5L7_P2 Protocol 2 230093402 99.83 1.93 95.96 1.85 NA
FG9_F5L5_P1 Protocol 1 140145696 99.72 1.96 90.57 6.94 NA
FG9_F5L6_P1 Protocol 1 141026172 99.71 1.96 90.57 6.93 NA
FG9_F5L7_P1 Protocol 1 137203932 99.71 1.92 90.55 6.94 NA

Whole Exome Sequencing (WES) data

WEO01_F1L1_NIM Nimblegen 83259226 99.41 30.79 87.69 6.44 4.10
WEO02_F1L1_NIM Nimblegen 77084010 99.45 20.22 91.95 3.65 4.54
WEO03_F1L1_NIM Nimblegen 68285448 99.55 63.90 87.85 6.62 4.25
WEO04_F1L2_NIM Nimblegen 56284428 99.48 58.44 85.26 7.95 5.15
WEO05_F1L2_NIM Nimblegen 64156718 99.42 58.02 92.53 3.49 5.79
WEO06_F1L2_NIM Nimblegen 77582290 99.34 56.53 89.79 4.97 5.74
WEO07_F1L2_NIM Nimblegen 56579026 99.39 33.44 91.55 4.03 5.75
WEO08_F1L2_NIM Nimblegen 89899166 99.47 33.03 92.37 3.59 5.37
WEO09_F1L2_NIM Nimblegen 64436078 99.47 52.28 89.41 5.51 5.80
WE10_F1L3_NIM Nimblegen 86560130 99.33 80.35 77.81 12.22 3.69
WE11_F1L3_NIM Nimblegen 92930912 99.55 41.64 91.81 4.29 5.73
WE12_F2L1_AGI Agilent 37132998 99.76 25.64 99.26 0.13 7391
WE13_F2L2_AGI Agilent 59463000 99.79 38.79 99.12 0.16 72.78
WE14_F2L1_AGI Agilent 39026800 99.71 11.10 99.25 0.14 73.00
WE15_F2L2_AGI Agilent 66249084 99.7 33.87 99.13 0.18 72.34
WE16_F2L2_AGI Agilent 38263608 99.79 14.96 99.18 0.19 71.47
WE17_F2L1_AGI Agilent 35598044 99.74 10.23 99.25 0.14 72.56
WE18_F2L2_AGI Agilent 55952210 99.79 13.36 99.29 0.11 72.25
WE19_F2L1_AGI Agilent 22641360 99.73 8.38 98.99 0.12 72.75
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WE20_F2L1_AGI
WE21_F3L1_NIM
WE22_F3L1_NIM
WE23_F3L1_NIM
WE24_F2L2_AGI
WE25_F2L1_AGI
WE26_F2L1_AGI
WE27_F2L2_AGI
WE28_F2L2_AGI
WE29_F2L1_AGI
WE30_F3L1_NIM
WE31_F3L1_NIM
WE32_F4L1_NIM
WE33_F4L1_NIM
WE34_F4L1_NIM
WE35_F4L1_NIM
WE36_F4L1_NIM
WE37_F4L1_NIM

RNA-Seq data

Please refer to ‘t Hoen et al. and Lappalainen et al. for the detailed list of statistics (10,11).

Agilent
Nimblegen
Nimblegen
Nimblegen
Agilent
Agilent
Agilent
Agilent
Agilent
Agilent
Nimblegen
Nimblegen
Nimblegen
Nimblegen
Nimblegen
Nimblegen
Nimblegen
Nimblegen

37199940
150724496
37265636
26184756
72841656
37493898
40715928
46221708
63970074
40170162
101770558
123446142
26271934
39446618
46648798
65861096
34564376
53798832

99.77
98.98
98.99
98.97
99.78
99.72
99.75
99.75
99.75
99.75
99.42
99.38
99.48

99.4
99.35
99.47
99.02
99.39

14.16
12.60
43.41
17.19
16.13
16.51
22.49
24.41
26.20
15.01
20.03
15.90
18.76
38.43
28.97
18.77
39.88
28.24

99.12
91.74
90.65
92.89
99.21
99.06
98.99
99.22
99.24
99.08
96.31
96.73
96.14
96.53
96.83
93.99
95.63
97.36

0.37
4.40
0.84
1.77
0.20
0.21
0.42
0.17
0.14
0.10
0.39
0.37
2.19
1.50
0.93
2.65
1.70
1.05

73.73
32.29
40.41
42.40
71.46
74.07
72.24
7391
72.82
73.22
61.51
62.20
62.16
59.55
62.13
43.11
58.61
62.07
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Supplementary Table 2 - An overview of simulated metagenomes. The accession number of genomes that constitute every
simulated metagenome is listed. The number of genomes from Firmicutes or Proteobacteria phyla is indicated.

Relative Abundance
Firmicutes 0 1 2 3 4 5 6 7 8 9 10
Proteobacteria 30 29 28 27 26 25 24 23 22 21 20
Genomes NC_009648 NC_009636 NC_004578 NC_004129 NC_002942 NC_002696 NC_017664 NC_017663 NC_017660 NC_017651 NC_017631
NC_009636 NC_004578 NC_004129 NC_002942 NC_002696 NC_017664 NC_017663 NC_017660 NC_017651 NC_017631 NC_017628
NC_004578 NC_004129 NC_002942 NC_002696 NC_017664 NC_017663 NC_017660 NC_017651 NC_017631 NC_017628 NC_017625
NC_004129 NC_002942 NC_002696 NC_017664 NC_017663 NC_017660 NC_017651 NC_017631 NC_017628 NC_017625 NC_017623
NC_002942 NC_002696 NC_017664 NC_017663 NC_017660 NC_017651 NC_017631 NC_017628 NC_017625 NC_017623 NC_017244
NC_002696 NC_017664 NC_017663 NC_017660 NC_017651 NC_017631 NC_017628 NC_017625 NC_017623 NC_017244 NC_017223
NC_017664 NC_017663 NC_017660 NC_017651 NC_017631 NC_017628 NC_017625 NC_017623 NC_017244 NC_017223 NC_017171
NC_017663 NC_017660 NC_017651 NC_017631 NC_017628 NC_017625 NC_017623 NC_017244 NC_017223 NC_017171 NC_017168
NC_017660 NC_017651 NC_017631 NC_017628 NC_017625 NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160
NC_017651 NC_017631 NC_017628 NC_017625 NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147
NC_017631 NC_017628 NC_017625 NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027
NC_017628 NC_017625 NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976
NC_017625 NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733
NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567
NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410
NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080
NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995
NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717
NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688
NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681
NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_017173
NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_017174 NC_017174
NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_017190 NC_017190 NC_017190
NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_018089 NC_018089 NC_018089 NC_018089
NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_017195 NC_017195 NC_017195 NC_017195 NC_017195
NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_013315 NC_013315 NC_013315 NC_013315 NC_013315 NC_013315
NC_010995 NC_010717 NC_010688 NC_010681 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299
NC_010717 NC_010688 NC_010681 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304
NC_010688 NC_010681 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295
NC_010681 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953
Firmicutes 11 12 13 14 15 16 17 18 19 20 21
Proteobacteria 19 18 17 16 15 14 13 12 11 10 9
Genomes NC_017628 NC_017625 NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976
NC_017625 NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733
NC_017623 NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567
NC_017244 NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410
NC_017223 NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080
NC_017171 NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995
NC_017168 NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717
NC_017160 NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688
NC_016147 NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681
NC_016027 NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_014393
NC_015976 NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_009513 NC_009513
NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_009617 NC_009617 NC_009617
NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_009633 NC_009633 NC_009633 NC_009633
NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_009641 NC_009641 NC_009641 NC_009641 NC_009641
NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_012925 NC_012925 NC_012925 NC_012925 NC_012925 NC_012925
NC_010995 NC_010717 NC_010688 NC_010681 NC_009697 NC_009697 NC_009697 NC_009697 NC_009697 NC_009697 NC_009697
NC_010717 NC_010688 NC_010681 NC_017992 NC_017992 NC_017992 NC_017992 NC_017992 NC_017992 NC_017992 NC_017992
NC_010688 NC_010681 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017
NC_010681 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065
NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950
NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173
NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174
NC_017190 NC_017190 NC_017190 NC_017190 NC_017190 NC_017190 NC_017190 NC_017190 NC_017190 NC_017190 NC_017190
NC_018089 NC_018089 NC_018089 NC_018089 NC_018089 NC_018089 NC_018089 NC_018089 NC_018089 NC_018089 NC_018089
NC_017195 NC_017195 NC_017195 NC_017195 NC_017195 NC_017195 NC_017195 NC_017195 NC_017195 NC_017195 NC_017195
NC_013315 NC_013315 NC_013315 NC_013315 NC_013315 NC_013315 NC_013315 NC_013315 NC_013315 NC_013315 NC_013315
NC_017299 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299 NC_017299
NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304 NC_017304
NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295 NC_017295
NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953 NC_002953
Firmicutes 22 23 24 25 26 27 28 29 30
Proteobacteria 8 7 6 5 4 3 2 1 0
Genomes NC_015733 NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_012778
NC_015567 NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_013798 NC_013798
NC_015410 NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_013316 NC_013316 NC_013316
NC_011080 NC_010995 NC_010717 NC_010688 NC_010681 NC_014334 NC_014334 NC_014334 NC_014334
NC_010995 NC_010717 NC_010688 NC_010681 NC_014335 NC_014335 NC_014335 NC_014335 NC_014335
NC_010717 NC_010688 NC_010681 NC_004461 NC_004461 NC_004461 NC_004461 NC_004461 NC_004461
NC_010688 NC_010681 NC_004557 NC_004557 NC_004557 NC_004557 NC_004557 NC_004557 NC_004557
NC_010681 NC_014387 NC_014387 NC_014387 NC_014387 NC_014387 NC_014387 NC_014387 NC_014387
NC_014392 NC_014392 NC_014392 NC_014392 NC_014392 NC_014392 NC_014392 NC_014392 NC_014392
NC_014393 NC_014393 NC_014393 NC_014393 NC_014393 NC_014393 NC_014393 NC_014393 NC_014393
NC_009513 NC_009513 NC_009513 NC_009513 NC_009513 NC_009513 NC_009513 NC_009513 NC_009513
NC_009617 NC_009617 NC_009617 NC_009617 NC_009617 NC_009617 NC_009617 NC_009617 NC_009617
NC_009633 NC_009633 NC_009633 NC_009633 NC_009633 NC_009633 NC_009633 NC_009633 NC_009633
NC_009641 NC_009641 NC_009641 NC_009641 NC_009641 NC_009641 NC_009641 NC_009641 NC_009641
NC_012925 NC_012925 NC_012925 NC_012925 NC_012925 NC_012925 NC_012925 NC_012925 NC_012925
NC_009697 NC_009697 NC_009697 NC_009697 NC_009697 NC_009697 NC_009697 NC_009697 NC_009697
NC_017992 NC_017992 NC_017992 NC_017992 NC_017992 NC_017992 NC_017992 NC_017992 NC_017992
NC_018017 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017 NC_018017
NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065 NC_018065
NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950 NC_017950
NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173 NC_017173
NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174 NC_017174
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NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

NC_017190
NC_018089
NC_017195
NC_013315
NC_017299
NC_017304
NC_017295
NC_002953

Please note that gut and right palm microbiomes were obtained from Caporaso et al (12).
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Supplementary Figure 1 - The optimal choice of k. The distance of three metagenomes that consist of 30 genomes from the
Firmicutes phylum, 30 genomes selected from Firmicutes and Proteobacteria phyla, and 30 genomes from the Proteobacteria
phylum were measured from 10 random permutations (without changing the overall nucleotide composition) based on

different k sizes, ranging fro 1 to 12. Data points depict the median distance between each metagenome and its corresponding
permutated sets. Bars indicate the standard deviation.
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Supplementary Figure 2 - The k-mer spectrum of modelled metagenomes. A) The k-mer spectrum of metagenome
consisting of 30 species from the Firmicutes phylum. The k size ranges from 8 to 14, coloured accordingly. The full spectrum is
depicted in panel i (left panel), and two zoomed in plots (ii and iii) are provided on the right. B) The k-mer spectrum of

metagenome consisting of 30 species from the Proteobacteria phylum. C) The k-mer spectrum of metagenome consisting of 30
species from the Firmicutes and Proteobacteria phyla.
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Supplementary Figure 3 - The k-mer spectrum on human sequencing data. A) The k-mer spectrum of the human
reference genome (hg19) for k sizes ranging from 9 to 15, coloured accordingly. The full spectrum is depicted in panel i (left
panel), and two zoomed in plots (ii and iii) are provided on the right. B) The k-mer spectrum of genome, exome, and
transcriptome reference sequences. The k size 12 is used to generate these profiles. C) The k-mer spectrum of whole genome

sequencing, whole exome sequencing and RNA-Seq data. The k size 12 is used to generate these profiles. Different NGS data
types are indicated in different colours.
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Supplementary Figure 4 - The nullomers distribution in k-mer spectrum of RNA-Seq data. A) Histogram of the total
number of missing k-mers (k-mers with frequency of zero) across 665 RNA-Seq data. B) Scatter plot of the total number of
missing k-mers versus the total number of reads per sample. C) Box plot of the total number of missing k-mers grouped
according to the sequencing laboratories.
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Supplementary Figure 5 - The variation between k-mer distances in RNA-Seq data. A) Box plots of the pairwise distance
measures, scaled only, between samples sequenced in the same laboratory (left panel) or different laboratories (right panel).
The distances are grouped for samples based on their sequencing laboratories and coloured accordingly. B) Box plots of the
pairwise distance measures, scaled and smoothened, between samples sequenced in the same laboratory (left panel) or
different laboratories (right panel). The distances are grouped for samples based on their sequencing laboratories and
coloured accordingly.
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Supplementary Figure 6 - Data quality influences the complexity of the k-mer spectrum of RNA-Seq data. A) The k-mer
spectrum of HG00108.7 sample that passed all QC measures for k size 12. The full spectrum is depicted in panel i (left panel),
and two zoomed in plots (ii and iii) are provided on the right. B) The k-mer spectrum of NA18861.4 sample that did not pass
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Supplementary Figure 7 - Genome-wide coverage of discordant reads in WGS data. Circos plots depict the overall
coverage of discordant reads across all chromosomes for samples prepared using the first protocol (inner circles, in orange)
and second protocol (outer circles, in blue). Coverage expectedly peaks at most centromeres. Datasets from each individual are

merged and labelled accordingly.
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Supplementary Figure 8 - GC-content and insert size distributions in WGS data. A) The distribution of GC-content per
read, grouped according to the choice of library preparation protocol (protocol one in red and protocol two in blue).
Distribution for samples from each individual is provided. B) The distribution of the estimated insert sizes, grouped according

to the choice of library preparation protocol (protocol one in red and protocol two in blue).
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Supplementary Figure 9 - The influence of aligners in the rate of discordant reads and insert size distribution of WGS
data. A) Circos plots depict the overall coverage of discordant reads across all chromosomes for samples prepared using the
first protocol (inner circles, in orange) and second protocol (outer circles, in blue). Each panel provides the result obtained
using different aligners (stampy, bwa, and bowtie 2, respectively). Datasets from each individual are merged and labelled
accordingly. B) The distribution of the estimated insert sizes, grouped according to the choice of genome aligner (stampy, bwa,

and bowtie 2). Lower panel shows the insert size distribution per individual aligner, coloured based on the choice of library
preparation protocol (protocol one in red and protocol two in blue).
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Supplementary Figure 10 - Data quality influences the complexity of the k-mer spectrum of WGS data. The k-mer
spectrum (k = 12) of samples, prepared using the library preparation protocol one (red) or two (grey). The full spectrum is
depicted in panel i (left panel), and two zoomed in plots (ii and iii) are provided on the right.
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Supplementary Figure 11 - Capture performance in WES data. A) Circos plot depicts the coverage on chromosome 1 for
good (blue) and poor (orange) exome capture experiment. The location of designed probes in Nimblegen capture kit are
indicated on the outer circle in green. B) UCSC genome browser view of the chr1:5,880,000 - 5,980,000 covering a region on
NPHP4 gene for good and poorly captured whole exome sequencing data. Exons are indicated in black bars and the data
coverage is illustrated in blue and orange for two WES data with good and poor capture, respectively.
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Supplementary Figure 12 - Data quality influences the complexity of the k-mer spectrum in WES data. A) The k-mer
spectrum (k = 12) of samples with poor (red) or good (grey) capture performance. The full spectrum is depicted in panel i (left
panel), and two zoomed in plots (ii and iii) are provided on the right. B) The k-mer spectrum of a failed sample along with
successful captures using Nimblegen capture kit. C) The k-mer spectrum of samples that passed all QC measures grouped
according to the choice of exome capture kit (Nimblegen in red and Agilent SureSelect in grey).
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Supplementary Figure 13 - Strand-biased coverage in WES data is reflected in its k-mer spectrum. Circos plot
illustrates the ratio between the number of reads that map to the plus or minus strand of the human reference genome. The
data from WE10_F1L3_NIM with extreme duplication rate and subsequently imbalanced coverage of plus and minus strand is
plotted on the outer circle in red. The result of another WES that passed all QC measures, with comparable number of reads, is
plotted in the inner circle in blue. This plot illustrates the result on chromosome 1, partially zoomed in between coordinates

40 and 50 Mb.
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Supplementary Figure 14 - Detecting problematic samples using SGA. A) Total number of reads and estimated genome
size and duplication rate of WGS data from the first individual using SGA. Red lines depict the expected genome size (excluding
gaps) and duplication rate of each dataset that is calculated after alignment to the reference genome. Line plots show the
frequency of the k-mer position of the first error for each dataset. Errors are estimated based on rarity of k-mer frequencies.
B) Total number of reads and number of on-target reads are depicted for selected WES datasets along with SGA-estimated
genome sizes and duplication rates. Red line depicts the targeted genomic region of the Agilent capture kit and the blue line
depicts the targeted genomic region of the Nimblegen capture kit. Small red lines depict duplication rate of each dataset that is
calculated after alignment to the reference genome. Line plots show the frequency of the k-mer position of the first error for
each whole-exome dataset. C) Total number of reads and number of exonic reads in a set of RNA-Seq data along with SGA-
estimated genome sizes and duplication rates. Red lines depict the total size of all exons in the human reference genome and
duplication rate of each dataset that is calculated after alignment to the reference genome. Line plots show the frequency of
the k-mer position of the first error for each of RNA-Seq datasets.
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Supplementary Figure 15 - Estimated insert size distribution of WGS data using SGA. Fragment sizes are estimated by
SGA-Preqc for a subset of WGS data. Green, light blue and dark blue lines depicted samples that are prepared using the first
protocol (FG1_F1L1_P1, FG1_F1L2_P1 and FG1_F1L3_P1). Red and yellow lines depict samples that are prepared using the
second protocol (FG1_F4L1_P2 and FG1_F4L2_P2). The arrow indicates the extra mode that makes the insert size distribution
of samples from the first protocol bimodal.
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Supplementary Figure 16 - Estimated insert size distribution of WES data using SGA. Fragment sizes are estimated by
SGA-Preqc for a subset of WES data. The black arrow indicates samples that are prepared using the Agilent SureSelect capture
kit. The red arrow indicates samples that are prepared using the Nimblegen capture kit.
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Supplementary Figure 17 - Estimated insert size distribution of RNA-Seq data using SGA. Fragment sizes are estimated
by SGA-Preqc for a subset of RNA-Seq data. The WGS human data (purple), provided by SGA, is included as a reference.
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Supplementary Figure 18 - Speed and memory usage of kMer in generating and comparing profiles. A) Plots depict the
time (second) and memory (MB) needed to generate k-mer profiles for various sizes (k = 1:15). B) Plots depict the time and
memory needed to perform a pairwise comparison. During the pairwise comparisons, the process is repeated based on
different use of scaling and smoothing functions. Datasets contain 10,000 to 1 million single-end reads of 100bp long. All tasks
were carried out on a cluster node with Intel Xeon E5540 at 2.53 GHz with 8 cores, although only one core is used by kMer. For
the most up-to-date and detailed documentation on performance and best practices visit http://kmer.readthedocs.org and

www.lgtc.nl/kMer.
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