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ABSTRACT We propose a model for the interaction be-
tween human immunodeficiency virus and the immune system.
Two differential equations describe the interactions between
one strain of virus and one clone ofT lymphocytes. We use the
model to generalize earlier results pertaining to the AIDS
diversity threshold [Nowak, M. A., Anderson, R. M.,
McLean, A. R., Wolfs, T. F. W., Goudsmit, J. and May,
R. M. (1991) Science 254, 963-969]. Our model has (i) a stable
steady state corresponding to the "controlled" persistence of
the virus and (u) a region corresponding to AIDS. The sepa-
ratrix between the two regimes is formed by the stable manifold
of a saddle point. We define a dimensionless "virulence"
parameter which combines the infectivity and antigenicity of a
virus strain. We derive analytically two parameter conditions
involving virulence. The first corresponds to a saddle-node
bifurcation which causes AIDS due to the loss of the stable
equilibrium. The second corresponds to a global bifurcation
which causes AIIDS due to a change in the basins of attraction.
Incorporating diversity into the model, we derive a diversity
threshold corresponding to the saddle-node bifurcation. In this
threshold condition diversity and virulence have an equivalent
effect. By studying the effect of diversity on the critical
virulence that is required for a new mutant to cause AIDS, we
again establish that diversity and virulence are equivalent
parameters. Because in our model increasing diversity de-
creases the critical virulence, the strain that eventually causes
AIDS need not be a virulent one.

The development of AIDS is associated with the selective
depletion of the most crucial cell type of the immune system:
the CD4+ helper T cell. The human immunodeficiency virus
(HIV) infects helper T cells by binding the gpl20 virus
envelope glycoprotein to CD4+ molecules (1). The selective
infection and death of CD4+ T cells provides a simple
explanation for the impairment of the immune system (2, 3).
This explanation, however, is widely debated (4-7).
One hallmark of HIV infection is the long and variable

incubation period. Although the processes of infection and
immune activation have a short time scale, a typical time
scale for the incubation period is 10 years (8). Another
hallmark of HIV is its enormous genetic diversity. The
dominant surface antigen for the immune response is the V3
loop of gpl20 (9, 10). This V3 loop is hypervariable: virus
isolates from one infected individual have genetically differ-
ent V3 loops (11, 12). Since HIV accumulates one point
mutation per genome during an average replication cycle (12,
13), the genetic variability will grow exponentially. However,
antigenic variability is not unique to HIV: several pathogens
possess antigenic variability which lets them "run ahead" of
the immune response.
A recent model (14-17) combines these two hallmarks of

AIDS in that it attributes the long and variable incubation
period to genetic variability. The authors of the model coined
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the term "diversity threshold" for the critical variability
beyond which the immune system is no longer capable of
controlling the virus. The diversity threshold emerges math-
ematically from their simple and quite reasonable model. The
diversity threshold (14-17) is a generic property of a wide
variety of models. (See refs. 17 and 18 for recent reviews of
mathematical models for the various pathogenic effects of
HIV.)
The virus quasispecies (19) not only increases in diversity

but also evolves physiologically different strains. Virus
strains evolve different replication rates, cytotrophisms, and
antigenicities (20-22). Here we develop a model that allows
us to study the relation between the diversity of the virus
quasispecies and the "virulence" of each virus strain. We
derive a dimensionless virulence parameter and show that it
is involved in well-known local and global bifurcations.

Models of the Immune Response to HIV

Our models describe the interactions between one strain of
virus vj, where j is the strain number, and the clone(s) of
CD4+ T cells tj that recognizes this strain specifically. We
assume that for each strain of virus there will always be a
clone of T cells. Upon interaction with the virus the T cells
will either proliferate or become infected. Infection of the T
cells leads to cell death. The T cells have a constant turnover
and receive a constant supply of new cells from the thymus.
The virus grows exponentially and declines as a function of
the immune reaction. The latter is supposedly due to specific
antibodies and/or to cytotoxic T cells (3, 21, 23, 24). For
simplicity, we here assume that the immune reaction is
proportional to the concentration of HIV-specific CD4+
helper T cells.
These interactions are formalized in the model

tj= s + tj pvJ - 1- ivj)

vj= vj(r-ctj),

[1]

[2]

where we have scaled time with respect to the turnover ofT
cells, which is on the order of days (25). In our model r is the
maximum replication rate of the virus, s represents the
supply of specific T cells from the thymus, p is the maximum
rate of proliferation of the T cells, and k is the saturation
constant of the proliferation process. The parameter k is an
"antigenicity" parameter: highly antigenic strains will have
a low k value. The term cvjtj represents the immune response
and the term ivjtj represents the infection of T cells by the
virus. A very similar model has been developed indepen-
dently by Harnevo (26).
The nontrivial equilibrium of Eq. 2 corresponds to tj = rlc.

Thus we make the model dimensionless by scaling

Abbreviation: HIV, human immunodeficiency virus.
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ctj k',,d,v.V [3]2)=- and, Vj- } 3

to obtain

T-= + T( p -_ 1- V)I [4]
J '+V. 1

Vj= rV3(1- T3), [5]

where a- cs/r is the dimensionless source of T cells, and v
ik combines the virus antigenicity and infectivity. We treat

v as a "virulence" parameter: increasing v increases the
deleterious effects of the virus strain in the organism. The
dimensionless model has four parameters r, p, a-, and v. When
stimulated optimally, T-cell populations have a doubling time
of about 1 day-i.e., p = 2. To allow for analytical treatment
we assume that the maximum growth rate of the virus is the
same as that ofthe T cells-i.e., r = p - 1 = 1. Since the virus
probably grows much more slowly, this assumption will later
be relaxed. (See refs. 17, 27, and 28 for a discussion of
parameter values.) The source of specific T cells, s, and the
elimination of virus by T cells, c, are typically small param-
eters. Our default value for the dimensionless source is
therefore small-i.e., o = 0.01. To allow for T-cell growth we
let v < p; see Eq. 4.
For reasons of simplification, our model ignores the de-

pendency of the replication of the virus on T-cell numbers.
We have several arguments to support this assumption. First,
we consider just one clone of T cells which represents only
a small fraction of the total T-cell population. Second, the
virus replicates not only in T cells (29). Third, we study the
early development of AIDS, which is a stage during which
T-cell depletion is not yet severe.

Equilibria. Fig. la shows the nullclines of the model for v
= 10-3. The Vj = 0 nullcline is a straight line at Tj = 1. The
Tj = 0 nullcline corresponds to the curved lines. The model
has three equilibria for these parameters. The T-cell clone is

i04 a i04 b
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at rest in a "virgin" state at T3 = cr and V3 = 0. This state is
a saddle point: it is unstable to the introduction of virus. The
T-cell clone proliferates in the two other equilibria. They
correspond to the two intersects of the Vj = 0 and the Tj =
0 nullclines. The upper steady state is a saddle point (as can
be seen from the arrows), and the lower one is a stable spiral
(Fig. lb). We call the upper equilibrium the "Rubicon"
steady state and the lower one the "immune" steady state.
In the top left-hand corner we have a region where virus
increases and T cells decline. This region is the "AIDS
regime." Trajectories attaining this region approach Tj -+0,
V 0cx(Fig. lb).
The two horizontal asymptotes ofthe j=0 nullcline, which

exist for v << p, are found by setting Tj = 0 in Eq. 4; i.e.,

[6]T. = /.1 pvj/(i + vi) - -vvi'
The asymptotes correspond to those values of Vj for which
the denominator of Eq. 6 equals zero. Since this expression
is a quadratic there may be two asymptotes. For v << p the
approximate values of Vj can be found by considering two
cases. First, when Vj < 1, we can ignore the vVjterm to obtain

Vj = 1/(p- 1).

Second, when Vj >> 1, we approximate pVJ/(1 + Vj) by p to
obtain

Vj (p - 1)/v.

For our default value p = 2 the two asymptotes approxi-
mately correspond to Vj = 1 and Vj = v-l = 103.
Virulence

Virus strains usually appear in low numbers facing a T-cell
clone that is at rest. Thus, we will say a strain is introduced
in the virgin state at an infinitesimal value. For strains that are
introduced in the virgin state we distinguish two kinds:
"lethal" strains that cause AIDS and "sublethal" strains that
are controlled by the immune system. Fig. lb shows how a
sublethal virus strain expands but is eventually controlled by
the immune system. Any sublethal virus, however, "es-
capes" from immune control, thus causing AIDS, when it is
introduced in a sufficiently large dose (Fig. lb). We derive
two parameter conditions that determine whether or not a
strain is lethal. The first condition is based upon a local
bifurcation, the second upon a global bifurcation.

Existence of the Immune State. The effect of the virulence v
on the Rubicon and the immune steady states is studied in Fig.
lc. Continuing v as a bifurcation parameter, we observe that
the steady states disappear at a saddle-node bifurcation. This
local bifurcation point is obtained analytically by solving T3 =
Ofor vin Eq. 4. Because in these steady states Tj = 1, we obtain

r-71 p
V= + . [7]
M' 1+V

FIG. 1. Nullclines and trajectories of Eqs. 4 and 5. Parameters:
p - 1 = r = 1, oa = 0.01, and v = 0.001. (a) The light line forms the
Vj = 0 and the heavy lines form the Tj = 0 nullcline. Arrows indicate
the vector field. (b) Two trajectories for two initial conditions, i.e.,
(Tj, Vj) = (ar, 0.01) and (o, 100). A small dose of virus leads to a
trajectory spiraling into the immune state. A high dose of virus leads
to AIDS (see the heavy line). (c) The saddle-node bifurcation.
Beyond the critical value v = 0.172 the virus strain is lethal (see text).
The heavy line corresponds to the stable immune state, the light line
corresponds to the Rubicon steady state. Numerical results were
obtained with GRIND (30).

Since the saddle-node bifurcation corresponds to the maxi-
mum value of -' as a function of Vj (Fig. lc), we set ai-/aVj =
0 and solve for Vj. Substituting this value of Vj into Eq. 7 and
letting oa-k 0 gives us the "existence" condition

V= (v- ). [8]

Forp = 2, Eq. 8 corresponds to v - 0.172 (Fig. lc). Thus, a
single strain is lethal when v > (/- - 1)2. For such a strain
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there is no equilibrium in which the strain can be controlled
by the immune system.

Basins of Attraction. The existence of a stable equilibrium
is a necessary but not a sufficient condition for the control of
a single strain. In Fig. lb we saw that a large dose of a
sublethal virus-i.e., one for which v < ( - 1)2-may lead
to AIDS. The escape of sublethal virus is determined by the
separatrix between the basins of attraction of the immune
state and the AIDS regime. This separatrix is formed by the
stable manifold of the Rubicon equilibrium.
Such a separatrix imposes a condition not only on the virus

dose but also on the virulence v. Thus, studying a small virus
dose and various values of v, we numerically found at v =
0.01 a global bifurcation that corresponds to a heteroclinic
connection involving the Rubicon state and the virgin state
(Fig. 2 b and d). This heteroclinic connection turned out to
be a straight line. For v < 0.01 the c4limit set of the
neighborhood of the virgin state is the immune state; for v >
0.01 it corresponds to AIDS (Fig. 2 a vs. c). This suggests that
any virus for which v > 0.01 is lethal.
We have been able to prove that the straight line between

the two saddle states is invariant. The heteroclinic connec-
tion involves the stable manifold of the Rubicon steady state
and the unstable manifold ofthe virgin state. (Both manifolds
are one-dimensional.) The latter is calculated from the eigen-
vectors of the Jacobian matrix of the virgin state: if the
connection forms a straight line, the unstable manifold is
identical to the eigenvector that corresponds to the positive
eigenvalue.

In the virgin state Vj = 0 and Tj = oa. For r = p - 1 = 1 the
Jacobian matrixis

= [-1 o(2- v)1 [9]

The eigenvalues of this matrix are A+ = 1 - orand A_ = -1.
The eigenvector corresponding to A+ in the [Tj, Vj] state space

Vj

1u-,

;100< 1/

10-3
10-3

a
/ I1

b

1 103 10-3 1 103

is [1, (2 - ou)/cr(2 - A)]. Extending this eigenvector in a
straight line from the virgin state [a, 01 to the T-cell value in
the Rubicon state Tj = 1 gives the point

[10]

We are interested in the parameter values for which this
point corresponds to the Rubicon steady state. Since Tj = 1,
Vj = 0 is always satisfied. Substituting Eq. 10 into Eq. 4 and
solving Tj = 0 yields a fourth-order equation with three roots:

1-CJ
v cr, with Vj= a,
v = 1 + 2/lr, with V1= Cr-1,

,= 1, with Vj= 0.

[lla]

[llb]

[llc]

Only the first root, Eq. lla, is of interest here. Since Cr is
small, the second root violates our condition v < p (see Eq.
4) and is physically meaningless because Vj < 0. The third
root corresponds to the virgin state and not to the Rubicon
state.

Finally, we have to verify that, for r = p - 1 = 1 and Eq.
lla, this connection is indeed a trajectory. On the line from
[cr, 01 to [1, (1 - cr)/cr], we have Vj = (Tj - r)/ca. Substituting
this into Eqs. 4 and 5, we obtain Tj = orVp. This does indeed
give a straight trajectory with a slope 1/a.

In summary, at v = cr the separatrix corresponds to a
heteroclinic connection between the virgin and the Rubicon
state. Thus, a strain is lethal when v > cr (see Eq. lla). In
Eq. 8 we derived that strains are lethal when v> (Vp - 1)2.
However, since «<< (Np - 1)2, the separatrix condition (Eq.
lla) is much more important than the existence condition
(Eq. 8).

Diversity

T-cell activation by HIV is specific; i.e., only Vj will activate
Tj. Conversely, T-cell infection by HIV is nonspecific; i.e.,
any virus strain may infect any clone. This means that the
diversity of the virus quasispecies (19) appears only in the
infection term. Consider a model with n strains of virus and
n T-cell clones,

T( - 1-i'=\1+Vj i=1
[12a]

103iO 120 d

V jl100 60

10 ~~~~~~~0
10-3 1 103 0 0.6 1.2

Ti Ti

FIG. 2. Nullclines and the separatrix between the immune state
and the AIDS regime. Parameters: p - 1 = r = 1, ar = 0.01, and v

= 0.005, 0.01, 0.02. The heavy line depicts the unstable manifold of
the Rubicon steady state. (a) With v = 0.005, the virgin state lies in
the basin of attraction of the immune state. (b) With v = a = 0.01,
there is a heteroclinic connection between the virgin and the Rubicon
steady state. (c) With v = 0.02, the virgin state is no longer in the
basin of attraction of the immune state. (d) Same as b but for a linear
state space: the heteroclinic connection forms a straight line. Nu-
merical results were obtained with GRIND (30).

where i, j = 1, . . . , n. We first develop a "toy" model by
assuming that all strains have the same virulence and that all
strains have the same concentration. Note that the latter
assumption is valid if all strains attain the immune steady
state. The T-cell equation of the toy model is

[12b]1=>cr+T/j plfj-ii T

1 + v~J 1-nV

where ] = 1, . . . , n. To study the effect of diversity on the
escape of the virus quasispecies, we have to restrict our-
selves to sublethal strains-i.e., we have to satisfy v < cr.

Diversity Threshold. Eqs. 4 and 12b differ only in the
infection parameters, in v and nv, respectively. Thus, all
results obtained with Eq. 4 also apply to Eq. 12b ifwe replace
v by nv. Hence, the model has a diversity threshold corre-
sponding to the saddle-node bifurcation of Fig. lc at

nv= (VP-1), or n= v p - 1 [13]
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This means that a quasispecies that is increasing its diversity
by mutation will escape from immune control when n >
0-1(Vrp - 1)2. Here the system loses the equilibrium in which
the quasispecies is kept under control. Hence, all virus
strains composing the quasispecies suddenly start to grow,
and AIDS develops.

This confirms the result of Nowak et al. (14-17): a qua-
sispecies that is composed of sublethal strains causes AIDS
simply because it increases its diversity. The biological
mechanism by which AIDS develops in this model is an
increase in the total virus concentration. A quasispecies of a
diversity of n strains that are kept under control in the
immune state has a dimensionless total virus concentration Vj
- n.
With respect to the diversity threshold, Eq. 13 shows that

the diversity n and the virulence v are equivalent parameters
in this model. Doubling the diversity has the same effect as
doubling the virulence. Thus, Eq. 13 is not strictly a diversity
threshold but is a condition in terms of the "accumulated
virulence" of the quasispecies. In fact, one can regard the
term nvVj as a dimensionless total virus concentration.

Diversity and Virulence. Studying the effect of diversity on
the basins of attraction is more involved because different
strains need not be in the same equilibrium. We therefore
have to extend the toy model in order to make a distinction
between the established quasispecies nVj and a new mutant
V*. Given the presence of a quasispecies that is kept under
control in the immune state, what is the critical virulence at
which a new mutant escapes? Our extended model is

Vj = rVj(l-Tj), [14a]

= + (jT1 V1- 1 -nvV- v*V*), [14b]

and for the new mutant we have

= rV*(l - T*), [lSa]

T=a + T* ( V* -1- nvVj - v*V* ), [15b]

where vis the "average" virulence ofthe established strains,
and v* is the virulence of the mutant.
The equilibria of this four-dimensional system resemble

those of the toy model. The system has a virgin state Vj = V*
= 0 with Ti = T* = a. When Vj, V* > 0, the system can have
equilibria only when Tj = T*= 1 (see Eqs. 14a and 15a).
Solving Tj = T* = 0 for Tj = = 1 implies that Vj = V* (see
Eqs. 14b and 15b). When Vj = V* we may rewrite Eq. 14b as

Tj= Cr+ TjI p -_ 1- ,VJ [16]1+1')

where 77 nv + v*. Eqs. 4 and 16 differ only in the infection
parameters-i.e., in v and vj, respectively. Thus, all results
obtained with Eq. 4 also apply to Eq. 16 ifwe replace vby 21.
This means that the four-dimensional system has a Rubicon
state and an immune state, with Ti = T* = 1 and V1 = V*,
which disappear by a saddle-node bifurcation at 71 = (V; -
1)2. The Rubicon state is a saddle with a three-dimensional
stable manifold. This three-dimensional surface forms the
separatrix between the basins of attraction of the stable
immune state and the AIDS regime.

In addition to the three symmetric equilibria, there are two
asymmetric steady states where Vj # V* and Tj $ T*. The
steady state that is relevant for our question on the critical
virulence is a combination of an immune state, V T 1,

for the quasispecies, and a virgin state, T* or and V* 0,
for the new mutant. We call this the "infected" state. It is a
saddle point with a one-dimensional unstable manifold: it is
unstable to the introduction of V*. The other infected saddle
state, where V, = 0 and V* 1, is not of interest here.
For answering our question we have to introduce small

doses of the mutant strain in the infected state to check at
what combination of its virulence, v*, and the accumulated
virulence, nv, the mutant escapes. Because the eigenvector
corresponding to the unstable manifold of the infected state
has V* as its dominant component, we can also study our
question by following the fate of this unstable manifold as a
function of v* and nv. Biologically this is approximately the
same as following the fate of mutant strains appearing in the
infected state. Mathematically this corresponds to a global
bifurcation analysis.

In Fig. 3 we follow the fate of unstable manifold of the
infected state systematically in a two-parameter bifurcation
diagram. Our approach is as follows. For any value of n v, we
select Vj = Tj = 1, T* = a, and V* = 0 as an initial guess for
a Newton-Raphson iteration. This reliably attained the in-
fected state. Subsequently, the system is perturbed by mak-
ing a small step along the eigenvector corresponding to the
unstable direction (which largely corresponds to introducing
a small dose of V*). We study the unstable manifold by
numerical integration from this initial condition. Changing nv
and v* we plot a dot whenever the unstable manifold ap-
proaches the immune state (Fig. 3). Otherwise it attains the
AIDS regime. Thus, at the boundary between the dotted and
the white area the system is involved in a global bifurcation
in which the unstable manifold ofthe infected state glues with
the separatrix-i.e., with the three-dimensional stable man-
ifold of the Rubicon state. This global bifurcation defines the
critical virulence of the mutant; i.e., in the dotted area the
mutant is not lethal. We have found no indication for a
heteroclinic connection between the infected state and the
Rubicon state.
The relation between v* (the critical virulence of the

mutant) and nv, (the virulence of the quasispecies) is fairly
linear (Fig. 3). Thus, diversity and virulence again appear as
equivalent parameters: doubling the diversity corresponds to
halving the critical virulence. We finally study a virus that
grows more slowly than the T cells, with r = 0.1 (Fig. 3b, note
the change in scaling). Qualitatively, this does not affect the
results.
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......... ....:... ... :..
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FIG. 3. Effect of diversity (i.e., nv) on the critical virulence of a
new mutant. Biologically, each dot corresponds to a mutant safely
attaining the immune state. The horizontal and vertical lines corre-
sponds to the conditions lla and 13, respectively. This two-
parameter bifurcation diagram depicts the global bifurcation of the
unstable manifold of the infected state. In the dotted area the
unstable manifold approaches the immune state; in the white area the
unstable manifold attains the AIDS regime. The global bifurcation at
the boundary defines the critical virulence v.. We observe a fairly
linear relationship between v* and nv. (a) cr = 0.01, r = p - 1 = 1.
(b) a, = 0.01, r = 0.1, p = 2. Numerical results were obtained with
GRIND (30).
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Thus, mutants below the threshold conditions (Eqs. lla
and 13) may escape by the presence of an established
quasispecies. Escaping mutants grow monotonically and
evoke an immune response corresponding to proliferation of
T* (data not shown). When the mutant population gets
large-i.e., V* > v* '-all T cells, T* and Tj, start to decline.
This allows the entire quasispecies, nVj, to escape also.
Because the escaping mutant is generally much larger than all
other strains, it looks as if AIDS is caused by one particular
strain. Surprisingly, this mutant causing AIDS may have a
lower virulence than any of the strains that were kept under
control.

Discussion

The biological mechanism by which the diversity threshold
causes AIDS is an increase in the total virus load. The total
virus concentration is the sum of all strains that are kept at
a low equilibrium. The fact that strains persist and fail to be
eliminated is in agreement with recent immunological results.
After an immune reaction various antigens persist in the
system, thus contributing to immunological memory (31, 32).
However, since the concentrations of the persisting antigens
are probably small, it is questionable whether the total virus
concentration will ever be able to account for a critical
increase in the rate of T-cell infection. Additionally, inter-
esting characteristics of AIDS, such as polyclonal lympho-
cyte activation and its similarities to autoimmune disease
(5-7, 33), are not addressed by these simple models.

In our diversity model (Eqs. 14 and 15) it is assumed that
new mutants appear after the established strains of the virus
quasispecies have attained the immune steady state. This
assumption is valid only when mutants appear on a slow time
scale. Hamevo (26) has studied the full model numerically
(our Eq. 12a) by varying the time scale at which mutants are
introduced. Her results show that shortening the time scale
at which mutant strains appear decreases the critical diversity
at which AIDS develops. Our conjecture is that the results
based upon our toy model provide an upper bound for the
onset of AIDS. The original model of Nowak et al. (14-17)
has recently (34) been analyzed in a similar way. This
numerical study suggests that for one value of the diversity
threshold the onset to AIDS may strongly depend on the
actual parameters and the initial conditions (34). It seems
interesting to repeat this analysis for our model.
The virulence vthat we have defined forms a dimensionless

weighting factor for the virus concentration. Our results
suggest that the diversity and the virulence are equivalent
parameters. Since increasing nv decreases the critical viru-
lence, the continuous increase in the diversity of the quasi-
species increases the probability that the next mutant will
escape. If individual strains generally have a low virulence-
i.e., if v << a-our model predicts that the frequency
distribution of incubation times will be skewed. The distri-
bution should have a slow rising part because initially the
diversity is small and we expect most mutants to be con-
trolled by the immune system. It should have a steeply falling
part because mutants are likely to escape when the diversity
is high. However, the AIDS epidemic is too young to allow
for an analysis of the distribution of long incubation times.
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