Characterizing two-pathogen competition in spatially structured environments

Chiara Poletto^{1,2,*}, Sandro Meloni^{3,4}, Ashleigh Van Metre^{1,2,5}, Vittoria Colizza^{1,2,6}, Yamir Moreno^{3,4,6}, Alessandro Vespignani^{6,7}

September 8, 2014

¹Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France
²INSERM, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France
³Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
⁴Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
⁵Wofford College, South Carolina, USA
⁶ISI Foundation, Torino, Italy

⁷Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston MA, USA

1 Figure S1: Competition between the two strains as a function of r and σ

Figure S1: Competition between the two strains as a function of r and σ for two distinct values of travelling probability p. The quantity in the z-axis is the logarithm of the ratio $D_{\infty}^s/D_{\infty}^f$. Colour code is proportional to the value in the z-axis, and the heat-map in the horizontal plane indicates the same quantity for the sake of visualisation. The white curve indicate the parameter region corresponding to the crossover where the two strains co-dominate, that is identified by $\log (D_{\infty}^s/D_{\infty}^f) = 0$. The parameter τ is equal to 2.