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I. THEORY OF SPIN PUMPING

Spin dynamics of an ultrathin film are well described by the Landau-Lifshitz-Gilbert

equation of motion:
∂M

∂t
= −γ [M ×Heff ] + α

[
M × ∂u

∂t

]
, (1)

where u is the unit vector of the direction of magnetisation,M ; γ the gyromagnetic ratio and

α the dimensionless Gilbert damping constant, which parametrises energy loss through such

mechanisms as coupling to the lattice or two-magnon scattering.1 As the magnetisation of a

ferromagnetic layer precesses on resonance it acts as a spin battery, generating a pure spin

current transverse to the axis about which it precesses. Therefore, when the ferromagnetic

(FM) layer is thicker than the ferromagnetic coherence length, a pure spin current can be

driven into an adjacent non-magnetic (NM) layer. The pumped spin momentum that enters

the NM layer, Isp, is determined by the spin mixing conductance, g↑↓ as:2

Isp =
~
4π

Re(g↑↓)

[
u× ∂u

∂t

]
. (2)

If the spin-flip relaxation rate in the adjacent NM layer is smaller than the pumping rate a

total spin angular momentum s builds up in the NM layer, and spin-backflow occurs. This

leads to a backflow current, back into the FM layer:

Iback =
g↑↓

2πN
[s−m(m) · s] , (3)

with N the one-spin density of states. Therefore, the total spin momentum leaving the FM

layer is reduced by the amount flowing back into it from the normal metal. The penetration

of the spin current into the NM is then:

δsp = D · τsf = vF

√
τsfτm/3 , (4)

where D is the diffusion coefficient in the normal metal, vF the Fermi velocity in the NM

layer, and τsf and τm the NM layer’s spin-flip and momentum scattering times, respectively.

The increased flow of spin momentum out of the FM layer then acts as another channel

for energy loss, leading to an observable increase in damping. Since this damping is linear

with resonant frequency it can be described in the same terms as Gilbert damping, and

its contribution isolated by comparison with bare FM layers. In a FM/NM system the

2



spin-pumping contribution to damping is:

αsp =

[
1−

(1 + e−2kd)1
2
vF(

Dk + 1
2
vF + e−2kd

) (
1
2
vF −Dk

)]
× gµB

4πMs

g̃↑↓
1

d
,

(5)

where k = 1/δsp and d the thickness of the FM layer. As the thickness of the NM layer

increases, the spin current that it can absorb also increases. This manifests as an increase

in damping. However, once tNM > δsp, αsp saturates to its maximum value.

In the case of a FM1/NM/FM2 structure, the second FM layer acts as a spin sink for the

spin current driven out of the first FM layer. The absorbed spin current exerts a torque on

the static magnetisation in FM2, which can lead to precession of magnetisation even when

the resonance condition is not met. The addition of a second scattering interface and a

high-efficiency spin sink modifies the spin pumping equations significantly. In this case the

LLG becomes:3

∂mi

∂t
= −γ

[
mi ×H i

eff

]
+ α0

i

[
mi ×

∂mi

∂t

]
+αsp

i

[
mi ×

∂mi

∂t
−mj ×

∂mj

∂t

]
,

(6)

where the subscript denotes the magnetic layer number, α0 the intrinsic Gilbert damping

parameter and αsp an additional damping due to spin pumping. The average magnetisation

is then damped as before, by α0, while the difference experiences an increased damping

α = α0 + αsp
1 + αsp

2 . The additional damping terms are defined as

αsp =

[
1−

[(
Dk + 1

2
vF

)
+ e−2kd

(
Dk − 1

2
vF

)]
1
2
vF(

Dk + 1
2
vF

)2
+ e−2kd

(
Dk − 1

2
vF

)2

]
× gµB

4πMs

g̃↑↓
1

d
,

(7)

which, in the limit of ballistic transport, goes to:4

αsp =
gµB

4πM
g̃↑↓

1

d
. (8)

Damping is highest when the spin current can cross the spacer layer and be efficiently

absorbed by the second FM layer. As the thickness of the spacer layer increases the spin

pumping decreases due to increasing backflow. The increase in damping reaches its minimum
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value when the spacer layer is thicker than the spin coherence length, and no current reaches

FM2.5

While this theory adequately describes pumping into the bulk states of a TI, which are

essentially a normal insulator with high spin-orbit coupling, it does not cover pumping into

the surface state of the TI. Here an additional damping term arises due to the exchange

interaction with the spin-polarised surface states of the TI, which acts as a braking torque

on the precessing magnetisation in the ferromagnet. Yokoyama et al.6 proposed an exchange

field:

Hex = −Eex

∫
drn(r) · σ̂(r), (9)

where Eex is the exchange coupling energy, σ̂(r) (twice) the electron spin density and n(r)

a unit vector pointing in the direction of the localized spins S = Sn. The torque induced

by this interaction is:7

Tsurface = γ ~M × µ0EexnFMS

M
〈~σ〉, (10)

with nFM the number of atoms per unit volume in the FM layer. The electron spin density

can also be written:

〈~σ〉 =
µHEex

evF2

S

M

d ~M

dt
, (11)

where µH is the surface electron mobility and vF is the surface electron Fermi velocity. This

term, with its time derivative of magnetisation, is reminiscent of the LLG in equation 1.

Substituting back into the torque term we see the equation is nothing other than a damping

term:

Tsurface =
µHE

2
ex

~evF2

S

M
~M × d ~M

dt
(12)

with damping factor:

αsurface =
µHE

2
ex

~evF2

S

M
. (13)

Therefore there exist three components of the damping factor for a FM adjacent to a TI:

αtotal = αbare + αbulk + αsurface (14)

where αbare is damping of an isolated ferromagnetic layer, αbulk damping due to spins pumped

into the bulk of the TI, and αsurface damping arising due to coupling to the surface state.

One can therefore expect a significant enhancement of damping in such samples.

Finally, we note also the exchange coupling term of the Hamiltonian of the surface state:8

Ĥex = vF ~·σ(~a× ẑ)− Eex

M
~σ · n(r), (15)
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with ẑ out of the plane of the film. This incorporates the effective vector potential:7

~a =
Eex

evF

S

M
ẑ × ~M . (16)

This will affect the free energy of the ferromagnet, and therefore cause a shift in resonance

frequency with respect to a bare ferromagnet.

II. SAMPLE FABRICATION

Samples were prepared using molecular beam epitaxy (MBE) under ultra-high vacuum

(UHV) conditions of better than 5×10−10 Torr. Sources were calibrated using a quartz

crystal microbalance and beam-flux monitor. First, the MgO substrate was annealed at

500◦C to clean the surface and improve the crystalline quality. Next, 30 nm of Co50Fe50

was co-evaporated from Fe and Co electron-beam evaporators. The substrate temperature

was held at 300◦C during this stage. Epitaxial growth of Co50Fe50 is possible despite the

lattice mismatch with MgO due to a rotation of crystal domains. We observed strong streaks

and Kikuchi lines in the RHEED patterns, indicative of high crystalline quality. Samples

were then transferred into a chalcogenide MBE for growth of the Bi2Se3 layers. The Co50Fe50

surface was again annealed at 300◦C to ensure the surface was high quality; this was checked

by RHEED before growth. The Bi and Se were then evaporated from Knudsen cells for

stoichiometric growth of Bi2Se3. Substrate temperature was 200◦C. RHEED patterns reveal

the formation of a crystalline mosaic domain pattern. Bi2Se3 thickness was varied between

4 - 20 nm. The samples was then transferred back to the metals MBE chamber, and a top

FM layer of Ni81Fe19 (30 nm) deposited at room temperature (∼ 300 K), to avoid damaging

the Bi2Se3 layer structure. This leads to the formation of polycrystalline Ni81Fe19, which is

desirable. Samples were then capped with either 10 nm Cr or 5 nm Cu, to prevent oxidation.
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