

Supporting Information © Wiley-VCH 2015

69451 Weinheim, Germany

Gold(I) as an Artificial Cyclase: Short Stereodivergent Syntheses of (–)-Epiglobulol and (–)-4 β ,7 α - and (–)-4 α ,7 α -Aromadendranediols**

Javier Carreras, Madeleine Livendahl, Paul R. McGonigal, and Antonio M. Echavarren*

anie_201402044_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

Table of Contents

Experimental Procedures	S-3
Characterization of new compounds	S-4
Syntheses of racemic 3 and 4	S-10
Catalyst screening to obtain 7, 3 and 8	S-12
NMR spectra	S-14
X-ray structure analyses	S-30
HPLC / GC analysis of 10, 3, 4 and 5	S-33

Experimental Procedures

Unless otherwise stated, reactions were carried out under argon atmosphere in solvents dried by passing through an activated alumina column on a PureSolvTM solvent purification system (Innovative Technologies, Inc., MA). Analytical thin layer chromatography was carried out using TLC-aluminium sheets with 0.2 mm of silica gel (Merck GF234) using UV light as visualizing agent or an acidic solution of vanillin in ethanol as developing agent. Chromatograpy purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, 40-60 mm). Preparative TLC was performed on 20 cm \times 20 cm silica gel plates (2.0 mm) thick, catalogue number 02015, Analtech). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. NMR spectra were recorded at 298 K on a Bruker Avance 400 Ultrashield or a Bruker Avance 500 Ultrashield. ¹H and ¹³C chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale. Mass spectra were recorded on a Waters Micromass LCT Premier (ESI), Waters Micromass GCT (EI, CI). Melting points were determined using a Büchi melting point apparatus. Optical rotations were obtained using a Jasco P-1030 polarimeter and concentrations are given in g/mL. Crystal structure determinations were carried out using a Bruker-Nonius diffractomer equipped with an APPEX 2 4K CCD area detector, a FR591 rotating anode with MoKa radiation, Montel mirrors as monochromator and a Kryoflex low temperature device (T = -173 °C). Full-sphere data collection was used with w and j scans. Programs used: Data collection APEX-2, data reduction Bruker Saint V/.60A and absorption correction SADABS. Structure Solution and Refinement: Crystal structure solution was achieved using direct methods as implement in SHELXTL and visualized using the program XP. Missing atoms were subsequently located from difference Fourier synthesis and added to the atom list. Least-squares refinement on F2 using all measured intensities was carried out using the program SHELXTL. All non-hydrogen atoms were refined including anisotropic displacement parameters.

Gold complexes **13** and **Au-I** were purchased from Aldrich, **Au-II**, ¹**Au-III**, ²**Au-IV**, ³**Au-V**² **Au-VI**, ⁴**Au-VII**, ⁴**Au-VIII**¹ and (1,5-cyclooctadiene)(pyridine)(tricyclohexylphosphine)iridium(I) tetrakis(3,5-bis(trifluoromethyl)phenyl)borate⁵ were prepared according to literature procedures.

¹ E. S. Smirnova, A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 9023-9026.

² C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer, A. M. Echavarren, J. Org. Chem. 2008, 73, 7721-7730.

³ N. Delpont, I. Escofet, P. Pérez-Galán, D. Spiegl, M. Raducan, C. Bour, R. Sinisi, A. M. Echavarren, *Catal. Sci. Technol.*, **2013**, *3*, 3007-3012

⁴ C. Obradors, D. Leboeuf, J. Aydin, A. M. Echavarren, Org. Lett. 2013, 15, 1576-1579.

⁵ B. Wüstenberg, A. Pfaltz, Adv. Synth. Catal. 2008, 350, 174-178.

Characterization of new compounds

Compound 10

Epoxy alcohol **10** was prepared according to the reported procedure: Tanuwidjaja, J.; Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. **2009**, 131, 12084-12085. The

ee was the previously reported, 82% (91:9). Chiral Analytical HPLC analysis was performed on a Hewlett-Packard 1200 Series HPLC equipped with DAD (diode array) detector and Chiralpack IA (250x4.6mm, 5 μ m, hexane/*iso*-propanol/ethanol 96:2:2, 1.0 mL/min): tR(2*S*, 3*S*) = 9.029 min, tR(2*R*, 3*R*) = 10.222 min. See page S-33.

Compound 11

A stirred mixture of epoxy alcohol **10** (2.5 g, 10.3 mmol), PPh₃ (3.25 g, 12.4 mmol), and NaHCO₃ (168 mg, 10 wt.-%) in CCl₄ (20 mL) was heated at reflux for 6 h.

After completion of the reaction, the solution was filtered through Celite and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (12:1 cyclohexane/AcOEt) to obtain epoxy chloride **11** (2.5 g, 94 %) as a colorless oil. $[a]_D^{25} = +7.2$ (c = 1.07, CHCl₃)

¹H NMR (400 MHz, CDCl₃) δ 5.15 - 5.03 (m, 2H), 3.68 (dd, J = 11.4, 5.9 Hz, 1H), 3.45 (dd, J = 11.4, 7.1 Hz, 1H), 3.04 (dd, J = 7.1, 5.9 Hz, 1H), 2.16 - 2.01 (m, 4H), 2.02 - 1.93 (m, 2H), 1.80 - 1.69 (m, 1H), 1.67 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 1.51 - 1.39 (m, 1H), 1.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.1, 131.6, 124.4, 123.2, 62.3, 61.7, 42.4, 39.8, 38.4, 26.8, 25.8, 23.8, 17.8, 16.5, 16.1.

HRMS: m/z calculated for C₁₅H₂₆ClO [M+H]⁺: 257.1667, found: 257.1663.

Compound 12

To a stirred solution of epoxy chloride **11** (2.0 g, 7.8 mmol) in dry THF (15 mL) at -40 °C was added *n*BuLi (9.4 mL, 23.4 mmol) dropwise, and the mixture was allowed to stir for an additional 2 h. The mixture was quenched with saturated

NH₄Cl (20 mL), and THF was removed under reduced pressure. The aqueous layer was extracted with ethyl acetate (2×20 mL), dried with Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (9:1 cyclohexane/AcOEt) to afford propargyl alcohol derivative **12** (1.4 g, 82 %) as a colorless oil.

 $[a]_D^{25} = -10.9 (c = 0.95, CHCl_3)$

¹H NMR (400 MHz, CDCl₃) δ 5.18 (ddd, J = 7.9, 6.6, 1.3 Hz, 1H), 5.08 (ddt, J = 8.4, 5.6, 1.5 Hz, 1H), 2.45 (s, 1H), 2.37 - 2.25 (m, 1H), 2.24 - 2.13 (m, 2H), 2.11 - 2.03 (m, 2H), 2.02 - 1.94 (m, 2H), 1.75 - 1.70 (m, 2H), 1.68 (d, J = 1.0 Hz, 3H), 1.65 (s, 3H), 1.60 (s, 3H), 1.50 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.4, 131.6, 124.3, 123.7, 87.8, 71.6, 68.4, 43.3, 39.8, 30.0, 26.8, 25.8, 23.6, 17.8, 16.2.

NMR data were in accordance with those previously reported for the racemic compound: Fürstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006 - 3019.

Compound 6

Dienyne **12** (1.4 g, 6.4 mmol) was dissolved in THF (5 mL) and added slowly over a THF solution (15 mL) of NaH (305 mg, 7.6 mmol, 60% weight suspensión in mineral oil) at 0 $^{\circ}$ C. The solution was kept at 0 $^{\circ}$ C for 1 h. TBAI (235 mg, 0.6

mmol) and benzyl bromide (0.91 mL, 7.6 mmol) was then added. The solution was allowed to warm to room temperature and left stirring overnight. The reaction was quenched with water

(10 mL) and AcOEt (10 mL) was added. The two phases were then separated and the organic phase was washed with brine (10 mL). The organic phase was dried over Na₂SO₄ and concentrated. Purification was made by column chromatography (cyclohexane to 4:1 cyclohexane/AcOEt) to obtain the product as a colorless oil (1.8 g, 91%).

 $[a]_D^{25} = +2.5 (c = 1.16, CHCl_3)$ ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.31 (m, 4H), 7.30 - 7.21 (m, 1H), 5.16 (ddd, J = 8.5, 5.9,1.4 Hz, 1H), 5.10 (ddt, J = 8.4, 5.6, 1.5 Hz, 1H), 4.68 (d, J = 11.1 Hz, 1H), 4.61 (d, J = 11.2 Hz, 1H), 2.51 (s, 1H), 2.23 (ddp, J = 20.5, 14.1, 7.1, 6.6 Hz, 2H), 2.07 (q, J = 7.5 Hz, 2H), 1.99 (dd, J = 9.2, 6.0 Hz, 2H, 1.89 - 1.71 (m, 2H), 1.68 (s, 3H), 1.63 (s, 3H), 1.60 (s, 3H), 1.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 135.7, 131.5, 128.4, 127.7, 127.4, 124.5, 123.8, 85.4, 73.6, 73.6, 66.4, 41.7, 39.8, 26.9, 26.5, 25.9, 23.1, 17.8, 16.2.

NMR data were in accordance with those previously reported for the racemic compound: Jimenez-Nuñez, E.; Raducan, M.; Lauterbach, T.; Molawi, K.; Solorio, C. R.; Echavarren, A. M. Angew. Chem. Int. Ed. 2009, 48, 6152 - 6155.

Compound 7

(Acetonitrile)[(2-biphenyl)di-tert-butylphosphine]gold(I) hexafluoroantimonate (13) (40.4 mg, 0.05 mmol) was dissolved in dry CH₂Cl₂ (10 mL) and added dropwise over a stirred solution of the dienyne 6 (810 mg, 2.6 mmol) in CH₂Cl₂ (43 mL, 0.05 M overall volume). The reaction mixture was stirred for 5 min and quenched by drops of Et₃N. The crude was concentrated in vacuo and the product 7 was purified by column chromatography (cyclohexane) as a white solid (487 mg, 60%).

 $M.p. = 61-62 \ ^{\circ}C$

 $[a]_{D}^{25} = -11.1$ (c = 1.18, CHCl₃)

¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 4.4 Hz, 4H), 7.29 - 7.18 (m, 1H), 4.40 (d, J = 12.1 Hz, 1H), 4.29 (d, J = 12.1 Hz, 1H), 2.64 - 2.56 (m, 1H), 2.54 - 2.46 (m, 1H), 2.22 - 2.10 (m, 1H), 2.08 - 1.98 (m, 2H), 1.96 - 1.81 (m, 1H), 1.68 (s, 3H), 1.67 - 1.59 (m, 1H), 1.58 - 1.48 (m, 2H), 1.32 - 1.25 (m, 1H), 1.24 (s, 3H), 1.13 (s, 3H), 1.06 - 1.01 (m, 1H), 1.00 (s, 3H), 0.73 (ddd, *J* = 10.6, 9.4, 6.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 140.9, 139.5, 132.8, 128.1, 126.6, 126.4, 79.2, 62.6, 61.8, 37.3, 36.5, 28.8, 26.9, 26.7, 25.7, 25.6, 21.4, 19.1, 17.7, 16.3.

NMR data were in accordance with those previously reported for the racemic compound: Jiménez-Núñez, E.; Raducan, M.; Lauterbach, T.; Molawi, K.; Solorio, C. R.; Echavarren, A. M. Angew. Chem. Int. Ed. 2009, 48, 6152 - 6155.

Compound 14

A solution of ether 7 (433 mg, 1.39 mmol) in MeOH:THF (1:1, 4 mL) was added over a suspension of 20% Pd(OH)₂/C (108 mg) in MeOH:THF (1:1, 4 mL). The compounds were hydrogenated at 23 °C and atmospheric pressure for 4 h. The reaction mixture was filtered through Celite, evaporated and purified by column chromatography (10:1 cyclohexane/AcOEt) to obtain the product as a colorless oil (243 mg, 79%).

 $[a]_D^{25} = -57.9$ (c = 1.12, CHCl₃)

¹H NMR (400 MHz, CDCl₃) δ 2.68 - 2.59 (m, 1H), 2.51 - 2.35 (m, 1H), 2.15 - 1.88 (m, 3H), 1.78 - 1.71 (m, 1H), 1.68 (s, 3H), 1.68 - 1.61 (m, 1H), 1.20 (s, 3H), 1.22 - 1.15 (m, 1H), 1.11 (s, 3H), 1.03 (s, 3H), 1.01 - 0.96 (m, 1H), 0.72 (ddd, *J* = 10.8, 9.5, 6.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 141.8, 132.3, 74.9, 60.6, 41.7, 37.1, 30.0, 28.9, 26.8, 26.3, 24.9, 21.1, 19.5, 18.2, 16.3.

NMR data were in accordance with those previously reported for the racemic compound: Jiménez-Núñez, E.; Raducan, M.; Lauterbach, T.; Molawi, K.; Solorio, C. R.; Echavarren, A. M. Angew. Chem. Int. Ed. 2009, 48, 6152 - 6155.

Compound 3, (-)-epiglobulol

(1,5-Cyclooctadiene)(pyridine)(tricyclohexylphosphine)-iridium(I) tetrakis(3,5bis(trifluoromethyl)phenyl)borate (98 mg, 0.03 mmol) and tricyclic**14**(100 mg,0.45 mmol) were dissolved in dry CH₂Cl₂ (4.5 mL, 0.1M) and placed in fivetubes into a "HEL reactor" (pressure reactor) inside the glovebox. The reactorwas charged with hydrogen gas (80 bar) and heated to 40 °C over 4 days. Thereactor was then depressurized and the solution was filtered through a pad ofsilica. The product was purified through column chromatography

(cyclohexane/EtOAc 10:1) to obtain (-)-epiglobulol (**3**) as a transparent oil (40 mg, 40%). See the GC analysis on page S-34.

 $[a]_D^{25} = -30.2 \text{ (c} = 0.84, \text{CHCl}_3)$

¹H NMR (400 MHz, C_6D_6) δ 2.10 - 1.99 (m, 1H), 1.97 - 1.86 (m, 1H), 1.83 - 1.72 (m, 1H), 1.69 - 1.56 (m, 3H), 1.56 - 1.47 (m, 2H), 1.45 - 1.31 (m, 2H), 1.23 - 1.12 (m, 1H), 1.09 (s, 3H), 1.05 (s, 3H), 1.07 - 1.03 (m, 2H), 0.98 (d, J = 7.0 Hz, 3H), 0.56 - 0.45 (m, 1H), 0.41 (dd, J = 11.0, 9.4 Hz, 1H).

¹³C NMR (101 MHz, C₆D₆) δ 71.6, 56.0, 43.4, 37.8, 36.2, 35.1, 31.4, 29.2, 29.0, 27.6, 26.3, 20.8, 19.6, 17.0, 16.1.

HRMS-APCI: *m/z* calculated for C₁₅H₂₆NaO [M+Na]⁺: 245.1876, found: 245.1882.

[Commercially available (-)-epiglobulol, CAS: 88728-58-9, $[a]_D^{26} = -34.8$ (c = 0.99, CHCl₃)]

Compound 15

To a stirred solution of 7 (250 mg, 0.81 mmol) in a mixture of $CH_2Cl_2/acetone/$ water (4 mL/4 mL/2 mL), 18-crown-6 (81 mg, 0.31 mmol) and NaHCO₃ (1.35 g, 16 mmol) were added. The reaction mixture was cooled to 0 °C and a solution of Oxone (2.6 g) in water (4 mL) was added. After stirring for 1 h at 0 °C, the reaction mixture was diluted with saturated NaHCO₃ (15 mL) and extracted with CH_2Cl_2 (4 × 15 mL). The combined organic layers were washed with Na₂S₂O₃ 10% (20 mL), saturated NaHCO₃ (20 mL) and saturated NaCl (20 mL).

The organic phase was dried over Na_2SO_4 and concentrated. Purification was made by column chromatography (20:1 cyclohexane/AcOEt) to obtain the product as a yellow oil (134 mg, 51%).

 $[a]_D^{26} = -47.7 \text{ (c} = 1.27, \text{CHCl}_3)$

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.19 (m, 5H), 4.35 (d, J = 11.5 Hz, 1H), 4.22 (d, J = 11.5 Hz, 1H), 2.21 (dd, J = 9.1, 1.3 Hz, 1H), 2.05 (ddd, J = 14.9, 6.8, 1.1 Hz, 1H), 1.90 – 1.61 (m, 5H), 1.57 – 1.40 (m, 2H), 1.38 (s, 3H), 1.24 (s, 3H), 1.03 (s, 3H), 0.98 (d, J = 10.1 Hz, 1H), 0.94 (s, 3H), 0.89 (td, J = 9.9, 8.0 Hz, 1H).

 13 C NMR (101 MHz, CDCl₃) δ 139.9, 128.3, 127.0, 127.0, 79.0, 73.5, 71.7, 63.4, 57.5, 36.7, 33.4, 28.9, 28.9, 26.8, 26.1, 23.78, 19.9, 18.9, 18.9, 18.7.

HRMS: *m/z* calculated for C₂₂H₃₀NaO₂ [M+Na]⁺: 349.2138, found: 349.2129.

Compound 5, (-)-4β,7α-aromadendranediol

To a solution of **15** (134 mg, 0.41 mmol) in anhydrous ethylenediamine (5 mL) was added lithium (85 mg, 25% weight suspension in mineral oil) and the resulting suspension heated to 50 °C was vigorous stirring. A deep blue color rapidly developed which faded to pale yellow after heating for 5 min. After 1.5 h a pale blue color returned, the reaction mixture was the allowed to cold to r.t. and quenched by dropwise addition of water (2 mL) The crude mixture was diluted with Et₂O (20 mL), washed with water (2 × 15 mL) and

brine (20 mL). The organic phase was then dried over Na₂SO₄ and concentrated. Purification was made by column chromatography (6:4 cyclohexane/AcOEt) giving the product as a white solid (76 mg, 78% (95% purity), 91% ee). Crystallization from CH₂Cl₂/cyclohexane increased the ee to >99% (60 mg, 61%). See the HPLC separation details on page S-36.

M.p. = 84-85 °C

 $[a]_D^{25} = -34.7 (c = 1.15, CHCl_3)$

¹H NMR (500 MHz, CDCl₃) δ 2.04 (td, J = 10.8, 6.4 Hz, 1H), 1.93 – 1.81 (m, 1H), 1.71 – 1.62 (m, 4H), 1.61 – 1.53 (m, 2H), 1.50 (t, J = 10.7 Hz, 1H), 1.39 – 1.29 (m, 1H), 1.24 (s, 3H), 1.20 (s, 3H), 1.19 (s, 1H), 1.04 (s, 3H), 1.04 (s, 3H), 1.01 (s, 1H), 0.67 (ddd, J = 11.3, 9.6, 5.6 Hz, 1H), 0.58 (dd, J = 10.4, 9.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl3) δ 80.8, 73.1, 52.7, 46.0, 42.6, 39.8, 31.5, 29.2, 27.1, 26.1, 25.1, 23.9, 20.4, 19.2, 16.6.

HRMS: m/z calculated for C₁₅H₂₆O₂ [M+Na]⁺: 261.1825, found: 261.1832.

All spectral data were consistent with the previously reported literature values: [Beechan, C. M.; Djerassi, C.; Eggert, H. *Tetrahedron* **1978**, *34*, 2503 $[a]_D^{20} = -35.8$ (c = 1.1, CHCl₃)]

Table S1. Comparison of the recorded ¹³C NMR data of **5** with those reported in the literatura for (-)-4 β ,7 α -Aromadendranediol and (-)-4 β ,7 β -Aromadendranediol (C. M. Beechan, C. Djerassi and H. Eggert, *Tetrahedron*, 1978, **34**, 2503–2508).

δ _C (5)	δ _C (4β,7α)	δ _C (4β,7β)	$\Delta\delta(5-4\beta,7\alpha)$	$\Delta\delta(5-4\beta,7\beta)$
16.6	16.4	16.4	0.2	0.2
19.2	19.1	19.2	0.1	0
20.4	20.1	20.9	0.3	-0.5
23.9	23.7	24.3	0.2	-0.4
25.1	24.9	25.1	0.2	0
26.1	25.8	26.9	0.3	-0.8
27.1	27.0	28.7	0.1	-1.6
29.2	29.0	30.1	0.2	-0.9
31.5	31.2	30.5	0.3	1.0
39.8	39.6	41.4	0.2	-1.6
42.6	42.4	42.8	0.2	-0.2
46.0	45.8	47.2	0.2	-1.2
52.7	52.5	56.4	0.2	-3.7
73.1	72.8	71.8	0.3	1.3
80.8	80.5	80.3	0.3	0.5

Compound 8

(Acetonitrile)[(2-biphenyl)di-*tert*-butylphosphine]gold(I) hexafluoroantimonate (**13**) (45.4 mg, 0.06 mmol) was dissolved in dry CH_2Cl_2 (10 mL) and added dropwise over a stirred solution of the dienyne **6** (913 mg, 2.9 mmol) and allylic alcohol (4.0 mL, 58.8 mmol) in CH_2Cl_2 (45 mL, 0.05 M overall volume). The reaction mixture was stirred for 15 min. and quenched by drops of Et_3N . The crude was concentrated in vacuo and the product **8** was purified by column chromatography (50:1 cyclohexane/AcOEt) as a colorless oil (428 mg, 56%).

Compound 7 was also purified from the reaction mixture (187 mg, 21%). $[a]_D^{25} = -46.6 \text{ (c} = 1.09, \text{CHCl}_3)$ ¹H NMR (400 MHz, CDCl₃) δ 5.92 (ddt, J = 17.1, 10.3, 5.4 Hz, 1H), 5.26 (dq, J = 17.2, 1.8 Hz, 1H), 5.09 (ddt, J = 10.3, 2.0, 1.4 Hz, 1H), 4.01 - 3.80 (m, 2H), 2.83 (d, J = 9.1 Hz, 1H), 2.44 - 2.29 (m, 1H), 2.12 - 1.99 (m, 2H), 1.92 - 1.82 (m, 2H), 1.77 - 1.67 (m, 2H), 1.66 (s, 3H), 1.11 (s, 3H), 1.04 - 0.98 (m, 1H), 1.00 (s, 3H), 0.96 (s, 3H), 0.92 - 0.78 (m, 1H), 0.70 (td, J = 9.8, 7.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 139.7, 136.8, 132.6, 115.5, 81.5, 62.1, 58.6, 38.2, 37.5, 28.8, 26.5, 25.8, 25.4, 20.1, 18.8, 18.0, 16.2.

HRMS: *m/z* calculated for C₁₈H₂₈NaO [M+Na]⁺: 283.2032, found: 283.2035.

Compound 16

To a stirred solution of allylic alcohol **8** (390 mg, 1.5 mmol) in dry MeOH (10 mL) was added catalytic amounts of Pd(PPh₃)₄ (86 mg, 0.07 mmol, 5 mol%). The slightly yellow solution was stirred for 5 min, and K₂CO₃ (621 mg, 4.5 mmol) was added. The reaction mixture was stirred for 72 h at reflux. Then, the solvent was evaporated and the residue was treated with 2 M HCl (20 mL) and CH₂Cl₂ (20 mL). The organic layer was washed with brine (15 mL), dried over Na₂SO₄, and concentrated in vacuo. The product was purified by column

chromatography (4:1 cyclohexane/AcOEt) giving compound **16** as a white solid (236 mg, 72%). M.p. = 81-82 °C

 $[a]_D^{25} = -33.4$ (c = 1.14, CHCl₃)

¹H NMR (300 MHz, CDCl₃) δ 2.65 - 2.55 (m, 1H), 2.43 - 2.30 (m, 1H), 2.13 - 2.00 (m, 1H), 2.00 - 1.93 (m, 2H), 1.90 - 1.79 (m, 1H), 1.70 - 1.60 (m, 4H), 1.10 (s, 3H), 1.05 - 0.97 (m, 1H), 1.00 (s, 3H), 0.95 (s, 3H), 0.92 - 0.77 (m, 1H), 0.70 (td, J = 9.7, 7.1 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 139.4, 132.4, 77.0, 62.3, 44.0, 37.2, 28.6, 26.3, 25.6, 25.4, 20.6, 20.4, 19.9, 17.8, 16.0.

NMR data were in accordance with those previously reported for the racemic compound: Jiménez-Núñez, E.; Raducan, M.; Lauterbach, T.; Molawi, K.; Solorio, C. R.; Echavarren, A. M. Angew. Chem. Int. Ed. 2009, 48, 6152 - 6155.

Compound 17

m-CPBA (55 mg, 0.32 mmol) was added to a solution of **8** (75 mg, 0. 29 mmol) in CH₂Cl₂ (5 mL) at 0 °C. The mixture was stirred for 4h, allowing the ice bath to slowly warm to rt, during which time a colorless precipitate formed. The reaction mixture was diluted with Et₂O (30 mL), then washed with aqueous saturated NaHCO₃ (2 × 15 mL), followed by brine (10 mL). The organic phase was then dried over Na₂SO₄ and concentrated. Purification was made by column chromatography (4:1 cyclohexane/AcOEt) giving the product as a white solid

(66 mg, 83%). M.p. = 56-57 °C

 $[a]_D^{26} = -90.5 (c = 1.18, CHCl_3)$

¹H NMR (400 MHz, CDCl₃) δ 5.87 (ddt, J = 17.2, 10.6, 5.4 Hz, 1H), 5.24 (dq, J = 17.2, 1.8 Hz, 1H), 5.09 (dq, J = 10.4, 1.5 Hz, 1H), 3.95 - 3.81 (m, 2H), 2.59 (d, J = 8.5 Hz, 1H), 2.07 - 1.93 (m, 1H), 1.90 (dd, J = 13.0, 1.4 Hz, 1H), 1.82 - 1.59 (m, 4H), 1.43 (s, 3H), 1.46 - 1.39 (m, 1H), 1.20 - 1.09 (m, 1H), 1.06 (s, 3H), 1.07 - 1.04 (m, 1H), 1.02 (s, 3H), 1.00 (s, 3H), 0.96 - 0.86 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.2, 115.8, 78.8, 72.7, 70.8, 61.7, 53.3, 38.1, 33.1, 29.8, 29.2, 28.67, 25.2, 22.0, 21.8, 19.6, 19.3, 18.9, 18.4.

HRMS: *m/z* calculated for C₁₈H₂₈NaO₂ [M+Na]⁺: 299.1982, found: 299.1987.

Compound 4, $(-)-4\alpha$, 7α -aromadendranediol

To a solution of 17 (30 mg, 0.11 mmol) in anhydrous ethylenediamine (2 mL) was added lithium (25 mg, 25% weight suspensión in mineral oil) and the resulting suspensionn heated to 50 °C was vigorous stirring. A deep blue color rapidly developed which faded to pale yellow after heating for 5 min. After 1.5 h a pale blue color returned, the reaction mixture was the allowed to cold to r.t. and quenched by dropwise addition of water (2 mL) The crude mixture was diluted with Et_2O (30 mL), washed with water (2 × 20 mL mL)

and brine (20 mL). The organic phase was then dried over Na₂SO₄ and concentrated. Purification was made by column chromatography (1:3 cyclohexane/AcOEt) giving the product as a white solid (16 mg, 62%, 76% ee). Crystallization from CH_2Cl_2/c -Hex increased the ee to >99% (11 mg, 43%). See the HPLC separation details on page S-35.

M.p. = 126-127 °C

 $[a]_D^{25} = -36.1$ (c = 1.06, CHCl₃)

^TH NMR (400 MHz, CDCl₃) δ 2.16 (td, J = 10.7, 4.9 Hz, 1H), 1.98 - 1.80 (m, 2H), 1.77 - 1.62 (m, 3H), 1.58 - 1.39 (m, 2H), 1.31 - 1.25 (m, 1H), 1.23 (s, 3H), 1.08 (s, 3H), 1.04 (s, 3H), 0.97 (s, 3H), 1.00 - 0.93 (m, 1H), 0.92 - 0.79 (m, 1H), 0.74 - 0.59 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 80.4, 75.6, 54.7, 47.7, 44.3, 40.4, 29.0, 26.3, 25.8, 25.1, 23.8,

20.5, 19.9, 19.1, 16.6.

HRMS: m/z calculated for C₁₅H₂₆O₂ [M+Na]⁺: 261.1825, found: 261.1825.

All spectral data were consistent with the previously reported literature values: [Beechan, C. M.; Djerassi, C.; Eggert, H. *Tetrahedron* **1978**, *34*, 2503 $[a]_D^{20} = -39.3$ (c = 0.6, CHCl₃); Simmons,

B.; Abbas, M. W.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2009, 48, 4349 $[a]_D^{23} = -39.0$ (c $= 0.1, CHCl_3$

The synthesis of (+)-4, (+)-4 α ,7 α -aromadendranediol was performed following the same route described for (-)-4.

- R,R-10 was prepared according to the reported procedure: J. A. Marshall, R, K. Hann, J. Org. Chem. 2008, 73, 6753-6757. HPLC separation details on page S-33 (92% ee).
- ent-6: $[a]_D^{25} = -2.2$ (c = 1.11, CHCl₃)
- ent-8: $[a]_D^{25} = +49.2$ (c = 1.21, CHCl₃)
- (+)-4: $[a]_D^{29} = +37.0$ (c = 0.70, CHCl₃)

Syntheses of racemic 3 and 4

The syntheses of (\pm) -3 and (\pm) -4 were carried out from a 1.2:1 mixture of geranyl- and nervlacetone following the route described in the next figure:

A: Geranyl acetone (3.4 mL, 15 mmol) (*E*/*Z* ratio 55:45) was dissolved in 150 mL of THF and cooled down to 0°C. Ethynylmagnesium bromide (45 mL, 0.5 M solution in THF, 22.5 mmol) was added dropwise by syringe pump over 30 min. The reaction was monitored by TLC and when the starting material had been consumed the reaction was quenched with a saturated solution of NH₄Cl. The two phases were separated and the organic phase was washed with water followed by brine. The organic phase was then dried over Na₂SO₄ and concentrated. The product was purified by bulb-to-bulb distillation in a *Kugelrohr* apparatus. At a vacuum of 4 mbar the product is distilled at 160°C as a colourless oil (2.9 g, 87%). ¹H NMR (500 MHz, CDCl₃) δ 5.20-5.15 (m, 1H), 5.13-5.07 (m, 1 H), 2.45 (d, *E*+*Z* isomers, 1H), 2.34-1.98 (m, 7H), 1.73-1.56 (m, 12H), 1.50 (d, *E*+*Z* isomers, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 136.4, 131.8, 131.7, 124.5, 124.4, 124.3, 123.7, 71.6, 68.5, 68.4, 43.6, 43.3, 39.9, 32.1, 30.0, 26.8, 26.7, 25.8, 23.7, 23.6, 23.5, 17.8, 16.2.

B: Dienyne **A** (1 g, 4.6 mmol) was dissolved in THF (5 mL) and added slowly over a THF solution (10 mL) of NaH (370 mg, 9.2 mmol, 60% weight suspension in mineral oil) at 0 °C. The solution was kept at 0 °C for 1 h. TBAI (98 mg, 0.26 mmol) and benzyl bromide (0.66 mL, 5.5 mmol) was then added. The solution was allowed to warm to room temperature and left stirring overnight. The reaction was quenched with water (10 mL) and AcOEt (10 mL) was added. The two phases were then separated and the organic phase was washed with brine (10 mL). The organic phase was dried over Na₂SO₄ and concentrated. Purification was made by column chromatography on a ISCO Combiflash *Companion* system, with a gradient from 100% cyclohexane/0% EtOAc to 100% EtOAc over a 120g RediSep Rr Silica cartridge, giving the product as a colourless oil (1.0 g, 3.2 mmol, 70%). ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.23 (m, 4H), 7.20-7.16 (m, 1 H), 5.10-5.01 (m, 2H), 4.62-4.59 (d, *J* = 11.0 Hz, IH), 4.55-4.52 (d, *J* = 11.0 Hz, IH), 2.43(s, *E* isomer, 1H), 2.42 (s, *Z* isomer, 1H), 2.22-2.09 (m, 2H), 1.99-1.97 (m, 3H), 1.93-1.88 (m, 1 H), 1.79-1.64 (m, 2H), 1.61 (bs, 4H), 1.53 (s, 3H), 1.46-1.44 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 139.8, 135.5, 131.2, 128.5, 128.4, 127.8, 127.4, 125.3,125.0, 124.4, 85.5, 73.8, 73.6, 66.6, 42.6, 40.2, 32.2, 27.2, 26.5, 17.8, 16.1.

(±)-7 and C: **13** (24 mg, 0.032 mmol) was dissolved in dry CH₂Cl₂ and added dropwise over a stirred solution of the dienyne **B** (510 mg, 1.6 mmol) in dry CH₂Cl₂ (0.05 M). The reaction mixture was stirred until all starting dienyne had been consumed (TLC) and was then quenched by a 10% solution of NEt₃ in hexane and filtered through a pad of silica and concentrated. The two epimers were separated by column chromatography (Eluent c-Hex/EtOAc 95:5) in 59% yield (C, 139 mg, 27%; (±)-7, 164 mg, 32%). C: ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 7.3, 2H), 7.19 (t, *J* = 7.5, 2H), 7.06 (t, *J* = 7.3, 1H), 4.23 (d, *J* = 11.4, 1H), 4.15 (d, *J* = 11.4, 1H), 2.67 (m, 1 H), 2.57 (bd, *J* = 8.7, 1H), 2.32-2.25 (m, 1H), 2.12-2.06 (m, 1H), 1.99-1.82 (m, 2H), 1.70 (s, 3H), 1.68-1.61 (m, 2H), 1.43-1.38 (m, 2H), 1.14 (s, 3H), 1.14 (s, 3H), 0.75-0.68 (m, 1H). ¹³C NMR (126 MHz, DEPTQ, CDCl₃) δ 140.8, 139.7, 133.0, 128.4, 127.0, 126.8, 79.3, 63.1, 62.1, 37.5, 36.5, 28.9, 27.2, 27.1, 25.9, 25.7, 21.5, 19.4, 17.9, 16.4. HRMS: *m/z* calculated for C₂₂H₃₀O [M+Na]⁺: 333.2189, found: 333.2184.

(±)-16: A solution of ether C (840 mg, 2.7 mmol) in MeOH:THF (1:1, 5 mL) was added over a suspension of 20% Pd(OH)₂/C (108 mg) in MeOH:THF (1:1, 5 mL). The compounds were hydrogenated at 23 °C and atmospheric pressure for 4 h. The reaction mixture was filtered through Celite, evaporated and purified by column chromatography (10:1 cyclohexane/AcOEt) to obtain the product as a white solid (240 mg, 41%).

Catalyst screening to obtain 7, 3 and 8

1

2

3	PtO ₂	50	80	MeOH/THF	-
4	Α	50	80	C ₂ H ₄ Cl ₂	-
5	В	50	80	C ₂ H ₄ Cl ₂	-
6	С	50	80	C ₂ H ₄ Cl ₂	-
7	D	40	80	CH ₂ Cl ₂	-
8	E	23	50	CH ₂ Cl ₂	-
9	E	23	80	CH ₂ Cl ₂	traces
10	E	40	80	CH ₂ Cl ₂	40
11	E	50	80	C ₂ H ₄ Cl ₂	-
12	E	80	80	C ₂ H ₄ Cl ₂	-

Entry	cat. (2%)	temp. (°C)	Eq. AllyIOH	time (min)	Ratio 7/8 (GC-MS)	Yield (%) 7/8
1	13	r.t.	10	5	75/25	54/15
2	13	0	10	10	55/45	
3	13	-30	10	15	50/50	
4	13	-50	10	90	49/51	
5	13	-80	10	-	63/37	
6	13	-30	20	20	27/73	21/56
7	13 (1% Au)	-30	20	30	33/67	
8	13	-30	30	30	21/79	
9	Au-l	-20	20	150	46/53	
10	Au-ll	-30	20	20	29/71	15/43
11	Au-III	-20	20	120	70/30	
12	Au-V	-20	20	5 h.	40/60	
13	Au-VI	-30	20	45	65/35	
14	Au-VII	-30	20	45	70/30	
15	Au-VIII	-30 to r.t.	20	overnight	66/34	

Au-l

Ph_Ph P·Au-NTf₂ BMes₂

Au-ll

13

Au-V

 $\begin{array}{l} \textbf{Au-VI}: R_1, R_2 = Me \\ \textbf{Au-VII}: R_1 = OMe, R_2 = H \end{array}$

Au-III

Au-VIII : L = PPh₂

¹H NMR (400 MHz, CDCl₃) **12**

 $\text{COSY} \text{ in } \text{CDCl}_3 \text{ 7}$

1 H NMR comparative with comercial available (-)-epiglobulol and **3**

 $^{13}\mathrm{C}$ NMR comparative with comercial available (-)-epiglobulol and $\boldsymbol{3}$

110 100 f1 (ppm)

S-24

 $COSY in CDCl_3 4$, (-)-4 α ,7 α -aromadendranediol

HSQC in CDCl₃4, (–)-4 α ,7 α -aromadendranediol

X-ray structure analyses

Table 1. Crystal data and structure refinement for (\pm) -7.

Empirical formula	C22 H30 O	
Formula weight	310.46	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.9044(4) Å	$\alpha = 82.296(2)^{\circ}$
	b = 9.3413(4) Å	$\beta = 82.864(2)^{\circ}$
	c = 10.7520(5) Å	$\gamma = 88.700(2)^{\circ}$
Volume	879.38(7) Å ³	• • • • •
Z	2	
Density (calculated)	1.172 Mg/m ³	
Absorption coefficient	0.069 mm^{-1}	
F(000)	340	
Crystal size	0.40 x 0.20 x 0.15 mm ³	
Theta range for data collection	1.93 to 41.23 °	
Index ranges	-16 <=h<=16 ,-17 <=k<=16,-1	9 <=l<=19
Reflections collected	39501	
Independent reflections	10469 [R(int) = 0.0435]	
Completeness to theta =41.23 °	0.891 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9897 and 0.9729	
Refinement method	Full-matrix least-squares on	
F^2		
Data / restraints / parameters	10469 / 0 / 212	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0449, wR2 = 0.1204	
R indices (all data)	R1 = 0.0608, wR2 = 0.1322	
Largest diff. peak and hole	0.709 and -0.264 $e.Å^{-3}$	

Table 2. Crystal data and structure refinement for (\pm) -16.

C15 H24 O	
220.34	
100(2) K	
0.71073 Å	
Monoclinic	
P2(1)	
a = 6.8966(4) Å	$\alpha = 90.00^{\circ}$
b = 46.307(3) Å	$\beta = 98.017(2)^{\circ}$
c = 12.7309(8) Å	$\gamma = 90.00^{\circ}$
4026.1(4) Å ³	
12	
1.091 Mg/m ³	
0.066 mm ⁻¹	
1464	
0.20 x 0.10 x 0.10 mm ³	
1.62 to 28.98 °	
-9 <=h<=7,-61 <=k<=45,-16	<=l<=16
24804	
13158 [R(int) = 0.0427]	
81.8%	
Empirical	
0.9935 and 0.9870	
Full-matrix least-squares on F	2
13158 / 1713 / 1187	
1.111	
R1 = 0.0659, wR2 = 0.1717	
R1 = 0.0885, wR2 = 0.1953	
x = 0.8(19)	
0.318 and -0.289 e.Å ⁻³	
	C15 H24 O 220.34 100(2) K 0.71073 Å Monoclinic P2(1) a = 6.8966(4) Å b = 46.307(3) Å c = 12.7309(8) Å 4026.1(4) Å ³ 12 1.091 Mg/m ³ 0.066 mm ⁻¹ 1464 0.20 x 0.10 x 0.10 mm ³ 1.62 to 28.98 ° -9 <=h<=7,-61 <=k<=45,-16 + 24804 13158 [R(int) = 0.0427] 81.8% Empirical 0.9935 and 0.9870 Full-matrix least-squares on F 13158 / 1713 / 1187 1.111 R1 = 0.0659, wR2 = 0.1717 R1 = 0.0885, wR2 = 0.1953 x = 0.8(19) 0.318 and -0.289 e.Å ⁻³

Table 3. Crystal data and structure refinement for (-)-4.

Empirical formula	C15 H26 O2	
Formula weight	238.36	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2	
Unit cell dimensions	a = 14.0814(6) Å	$\alpha = 90.00^{\circ}$
	b = 19.3046(8) Å	$\beta = 90.00^{\circ}$
	c = 10.5513(4) Å	$v = 90.00^{\circ}$
Volume	2868.2(2) Å ³	,
Z	8	
Density (calculated)	1.104 Mg/m ³	
Absorption coefficient	0.071 mm ⁻¹	
F(000)	1056	
Crystal size	0.40 x 0.40 x 0.30 mm ³	
Theta range for data collection	1.79 to 54.28 °	
Index ranges	-24 <=h<=29 ,-42 <=k<=	43 ,-18 <=l<=24
Reflections collected	109373	
Independent reflections	33206 [R(int) = 0.0290]	
Completeness to theta = 28.98°	94.2%	
Absorption correction	Empirical	
Max. and min. transmission	0.9791 and 0.9722	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	33206 / 0 / 319	
Goodness-of-fit on F ²	1.036	
Final R indices [I>2sigma(I)]	R1 = 0.0394 , $wR2 = 0.10$	009
R indices (all data)	R1 = 0.0527, $wR2 = 0.10$	092
Flack parameter	x =0.0(2)	
Hooft parameter	y = -0.03(10)	
Largest diff. peak and hole	0.399 and -0.240 e.Å ⁻³	

HPLC analysis

Area Percent Report

10

12

14 min

			===========		
Sorted By	:	Signal			
Multiplier	:	1.0000			
Dilution	:	1.0000			
Use Multiplier & Dilution	Factor	with ISTD	S		
Signal 1: DAD1 B, Sig=210	,10 Ref=	=off			
Peak RetTime Type	Width	Area	Height	Area	
# [min]	[min]	[mAU*s]	[mAU]	010	
	-				
1 9.037 MM 0.	1943	298.22714	25.58510	3.9534	
2 10.188 MM 0.	2236 7	245.38721	539.99695	96.0466	
Totals :	75	43.61435	565.58205		

GC separation of 3.

Agilent GC 6890N equipped with FID detector, HP-Chiral-20B 30mx0.25mm, 0.25 μ m T inj/aux 240 °C, Spilt 20:1 (1 μ L), 1.5 mL/min 50 -240 °C (30')/1° Cmin-1 Sample in DCM

HPLC separation of 4.

Agilent 1200 Series HPLC equipped with Quadrupole LC/MS 6130 detector (APCI) Sample Info : Hexane:EtOH (85:15) 1 mL/min Chiralpack IC, 5µL

- After the purification by cromatography column

- After crystalization

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier	& Dilution Factor	with ISTDs	
Signal 1: MSD1	221, EIC=220.7:221	.7	

	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
	1 2	5.930 7.351	 MM MM	0.1827 0.3516	1.40672e4 8.02488e6	1283.58118 3.80360e5	0.1750 99.8250
Totals :				8.038	95e6 3.810	644e5	

HPLC separation of 5.

Agilent 1200 Series HPLC equipped with Quadrupole LC/MS 6130 detector (APCI) Sample Info : Hexane:*i*PrOH (95:5) 1 mL/min Chiralpack IC, 5µL (Sample in DCM)

- After the purification by cromatography column

