**Corresponding authors:** Ralf Heermann Ludwig-Maximilians-Universität München Biozentrum, Bereich Mikrobiologie Großhaderner Str. 2-4 82152 Martinsried/München GERMANY

Helge B. Bode Goethe-Universität Frankfurt Merck Stiftungsprofessur für Molekulare Biotechnologie Fachbereich Biowissenschaften Max-von-Laue-Str. 9 60438 Frankfurt am Main GERMANY

*Fon:* +49 (89) 2180-74506 *Fax:* +49 (89) 2180-74520 *E-Mail:* heermann@lmu.de

Fon: +49 (69) 798-29557 Fax: +49 (69) 798-29527 E-Mail: h.bode@bio.uni-frankfurt.de

# Dialkylresorcinols as bacterial signaling molecules

# Supplementary Information Appendix

Sophie Brameyer<sup>1+</sup>, Darko Kresovic<sup>2+</sup>, Helge B. Bode<sup>2,3</sup>, and Ralf Heermann<sup>2</sup>

<sup>1</sup>Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Großhaderner Str. 2-4, 82152 Martinsried/München, Germany

<sup>2</sup>Goethe-Universität Frankfurt, Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany

<sup>3</sup>Buchmann Institut für Molekulare Lebenswissenschaften (BMLS), Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany

<sup>+</sup>both authors contributed equally to this work

# **BIOLOGICAL SCIENCES – Microbiology**

Keywords: quorum sensing, cell-cell communication, LuxR solos, entomo- and human-pathogenic bacteria, *Photorhabdus* 

# SUPPLEMENTARY NOTE

### Bacterial strains and plasmids

All strains used in this study are listed in SI Appendix, Table S1, the plasmids in SI Appendix, Table S2, and oligonucleotides in SI Appendix Table S3. E. coli strains were grown aerobically at 37°C in LB medium [10% (w/v) peptone, 5% (w/v) yeast extract, 10% (w/v) NaCl] or M63 minimal medium (1), whereas P. asymbiotica strains were grown aerobically at 37°C in Casein-Soya-Peptone (CASO) medium [10% (w/v) peptone of casein, 5% (w/v) peptone of soy flour, 5% (w/v) NaCl]. For preparation of solid media, 1.5% (w/v) agar was added. CASO agar was supplemented with 0.1% (w/v) pyruvate. Antibiotics were added for selection in the following concentration: ampicillin (100 µg ml<sup>-1</sup>), carbenicillin (100 µg ml<sup>-1</sup>), kanamycin (50  $\mu$ g ml<sup>-1</sup>), chloramphenicol (17  $\mu$ g ml<sup>-1</sup>), gentamicin (20  $\mu$ g ml<sup>-1</sup>), and streptomycin (20 µg ml<sup>-1</sup>). Media were supplemented with 50 µg ml<sup>-1</sup> aminolevulinic acid for growth of E. coli ST18. For production of DARs strain Photorhabdus asymbiotica PB68.1 was used. E. coli ST18 (SI Appendix, Table S1) was used as donor strain for conjugation of plasmid pMRS3-1-pauR-AB (this study) into P. asymbiotica PB68.1. Plasmid pUC19-Kan (Dr. Heinrich Jung, LMU München, lab collection) was used for cloning the 600 bp homology arms of the P. asymbiotica pauR gene, up- and downstream of a kanamycin resistance cassette to generate a pauR knockout in P. asymbiotica. For transfer into P. asymbiotica, this kanamycincassette surrounded by the *pauR*-homology arms was later brought into conjugation suicide plasmid pMRS101 (2) resulting in plasmid pMRS3-1-pauR-AB (see detailed description below). Plasmid pBAD-Cherry/pcfA (this study) was used as reporter plasmid to analyze  $P_{pcfA}$  activity.

# **Construction of plasmids**

For construction of the conjugation plasmid pMRS3-1-pauR-AB, a kanamycin cassette flanked by 600 bp homology arms representing the *pauR* up- (A-site) and downstream area (B-site) was generated. The homology arms were amplified by PCR with Phusion<sup>©</sup> polymerase (New England Biolabs, Frankfurt) using genomic DNA of Р. PauR FA SacI fwd asymbiotica template and primers as and PauR FA XmaI rev, and PauR FB Sall fwd PauR FB HindIII rev, and respectively. The A-site was then cloned upstream of the kanamycin cassette in

plasmid pUC19-Kan using restriction sites SacI and XmaI resulting in plasmid pUC-Kan-*pauR*-FA, then the B-site was cloned into plasmid pUC-Kan-*pauR*-FA using restriction sites SaII and HindIII resulting in plasmid pUC-Kan-*pauR*-AB. Then, the complete kanamycin cassette flanked with A- and B-site was amplified by PCR with primers pUC-ApaI\_sense and pUC-SpeI\_anti, cut with ApaI and SpeI, and the 2.7 kbp DNA fragment was ligated with equally treated vector pMRS101 resulting in plasmids pMRS3-*pauR*-AB. As last step, the pMB1 origin was removed from plasmid pMRS3-*pauR*-AB by treatment with restriction enzyme NotI and re-ligating the 9.5 kbp vector backbone resulted in suicide plasmid pMRS3-*pauR*-AB that was finally transferred into *E. coli* strain ST18. For construction of pBAD-Cherry, *mCherry* (750 bp) was amplified by PCR using primers Cherry\_AfIII\_fwd and Cherry\_SacI\_rev using the Plasmid pBR-Cherry (3) as template, and cloned into pBAD33 (4) using restriction sites AfIII and SacI. Expression *mCherry* is not under the control of the arabinose inducible *araBAD* promoter (4). Correct construction was verified by sequence analysis using primer mCherry-Seq\_fwd.

For construction of pBAD-Cherry/pcfA, 250 bp of the region upstream the pcfABCDEF operon was amplified by PCR using primers P04068 XmaI fwd and P04068 BamHI rev using P. asymbiotica genomic DNA as template, and cloned into plasmid pBAD33-Cherry (this study) using restriction sites XmaI and XbaI. Correct insertion was verified by sequence analysis using primer mCherry-Seq fwd. For construction of pBAD-Cherry/pauR, 400 bp of the region upstream pauR was amplified by PCR using primers P04062 BamHI fwd and P04062 XmaI rev using P. asymbiotica genomic DNA as template, and cloned into plasmid pBAD33-Cherry (this study) using restriction sites BamHI and XmaI. Correct insertion was verified by using primer mCherry-Seq fwd. For construction sequence analysis of pBRCherry/darA, 390 bp of the region upstream of the darABC operon (pau02400pau02402) was amplified by PCR using primers PdarA XmaI fwd and PdarA BamHI rev using P. asymbiotica genomic DNA as template, and cloned into plasmid pBAD33-Cherry (this study) using restriction sites XmaI and BamHI. Correct insertion was verified by sequence analysis using mCherry-Seq fwd.

The complete *pcfABCDEF/pauR* genomic region was cloned into expression vector pBAD24 so that the region is under control of the arabinose inducible *araBAD* promoter (4). The region was previously amplified in two parts by PCR using primers

Pau\_4062\_NheI\_sense1 and Pau\_4064\_XmaI\_anti1 or Pau\_4064\_XmaI\_sense1 and Pau\_4068\_PstI\_anti1, respectively, using genomic *P. asymbiotica* PB68.1 DNA as template. The two PCR products 3.7 kbp (*pauR/pcfEF*) and 5.1 kbp (*pcfABCD*) were cloned in two steps into pBAD24 using restriction sites NheI, XbaI and PstI resulting in plasmid pBAD/*pcfABCDEF/pauR*. For construction of the pBAD/*pcfABCDEF* plasmid, the region was previously amplified in two parts by PCR using primers Pau\_4063\_PstI\_sense1 and Pau\_4064\_XmaI\_anti1 or Pau\_4064\_XmaI\_sense1 and Pau\_4068\_NheI\_anti1, respectively, using genomic *P. asymbiotica* DNA as template and the two PCR products 2.6 kbp (*pcfEF*) and 5.1 kbp (*pcfABCD*) were cloned in two steps into pBAD24 using restriction sites PstI, XmaI and NheI.

For construction of pBAD24-His-*pauR*, *pauR* (717 bp) was amplified by PCR using the primers PAU4062-His-NheI\_fwd and 4062\_SalI\_rev using *P. asymbiotica* PB68.1 genomic DNA as template, and cloned into plasmid pBAD24 (4) using restriction sites NheI and SalI. Correct insertion was verified by sequence analysis using primer pBAD24\_Seq\_sense. The generation of *pauR* variants was achieved with two-step PCR using the appropriate primer pairs and *P. asymbiotica* PB68.1 genomic DNA as template to gain the respective amino acid substitution (Pau\_T62A\_fwd and Pau\_T62A\_rev, Pau\_Y66A\_fwd and Pau\_Y66A\_rev or Pau\_D75A\_fwd and Pau\_D75A\_rev, respectively). The overlap PCR was performed using the primers PAU4062-His-NheI\_fwd and 4062\_SalI\_rev and the fragment was cloned into plasmid pBAD24 using restriction sites NheI and SalI. Correct insertion was verified by sequence analysis using primer pBAD24\_Seq\_sense.

For construction of the reporter plasmid pBBR1-MCS5-TT-RBS-P<sub>pcfA</sub>-lux, 250 bp of the region upstream of *pcfA* (*pau\_04068*) was amplified by PCR using primers P04068\_XmaI\_fwd and P04068\_XbaI\_rev using *P. asymbiotica* PB68.1 genomic DNA as template, and cloned into plasmid pBBR1-MCS5-TT-RBS-*lux* (5) using restriction sites XbaI and XmaI. Correct insertion was verified by sequence analysis using primer pNTPS\_Seq\_fwd.

### **Competent cells and transformations**

*E. coli* cells were made chemically competent using a modified RbCl method and transformed as described earlier (6). *P. asymbiotica* was made electrocompetent and transformed by electroporation. Cells of *P. asymbiotica* were cultivated aerobically in

CASO medium at 37°C up to an OD600 of 0.8-1.0. Then, cells were harvested by centrifugation at room temperature, the cell pellet was resuspended in the same volume of 10% (v/v) glycerol, and collected again by centrifugation. Cells were then washed in 1/2 of starting volume, and then in 1/20 of starting volume of 10% (v/v) glycerol, and then resuspended in 1/300 of starting volume in 10% (v/v) glycerol. For the following electroporation step, 60  $\mu$ l of cell suspension were mixed with 100 ng plasmid-DNA, incubated at room temperature for 10 min, and then transferred into 0.2 cm electroporation cuvettes. Electroporation was performed with a pulse of 2.500 V for 4-6 msec. Subsequently, cells were removed from the cuvettes by flushing with 1 ml CASO medium, and incubated aerobically at 37°C for 1.5 h. The complete transformation samples were spread on appropriate agar plates and incubated at 37°C for two days.

#### Generation of the gene knockouts in P. asymbiotica

Generation of P. asymbiotica PB68.1 ApauR (pau 04062) was performed by homologous recombination of a kanamycin cassette replacing the pauR gene. The conjugative plasmid transfer from donor strain E. coli ST18 pMRS3-1-pauR-AB into P. asymbiotica PB68.1 was performed with the filter mating method (7). Therefore, the donor strain was cultivated in LB broth and the recipient strain P. asymbiotica PB68 in CASO medium up to an optical density  $(OD_{600})$  of 0.6 (donor) or 0.8 (recipient). Then, a volume of 1 ml donor cells were harvested by centrifugation, washed three-times with CASO medium and resuspended in a volume of 30 µl. A volume of 5 ml of the recipient was harvested by centrifugation and resuspended in a volume of 30 µl. Donor and recipient were pooled and dropped onto a nitrocellulose filter that was positioned in the middle of a CASO agar plate. After incubation for 24 h at 37°C, the complete cell material was scraped from the filter, suspended in 1 ml CASO medium, spread onto CASO medium plates containing kanamycin and incubated for 2 days at 37°C. As the donor has a 5-aminolevulinic acid (ala) auxotrophy, this strain is not able to grow on CASO medium. Then, exconjugants were inoculated for 24 h in liquid CASO medium containing 10% (w/v) sucrose and kanamycin and then streaked on CASO medium containing 10% (w/v) sucrose and kanamycin. Clones were checked on streptomycin sensitivity by streaking on CASO agar containing streptomycin. Genomic DNA was prepared using the "Ultra-Clean Microbial DNA Isolation Kit" (Mo-Bio Laboratories Inc., Carlsbad, CA) of Kan<sup>R</sup>,

Suc<sup>R</sup> and Strep<sup>S</sup> clones, and the correct replacement of the *pauR* gene with the kanamycin cassette was verified by PCR using primers annealing outside the 600 bp homology arms (PauR\_check\_fwd and Kan\_LB\_anti or PauR\_check\_rev and Kan RB sense, respectively) and DNA sequencing.

The *darB* (*pau\_02401*) insertion mutant was generated using the suicide vector pNPTS138-R6KT (8). Briefly, a 577 bp fragment within *darB* was amplified with restriction site modified primers darB\_KI\_EcoRV\_fwd and darB\_KI\_NheI\_rev and cloned into pNPTS138-R6KT via NheI and EcoRV. The final construct, pNPTS138-R6KT-*darB*, was then transferred into *E. coli* ST18 by transformation, and subsequently used for conjugation with *P. asymbiotica* PB68.1. Mutants were verified genotypically by PCR using the primer DarAB\_Check\_rev1 and pDS132 vector specific primers pDS\_Seq\_fwd resulting in 2.9 kbp DNA fragments and DarAB\_Check\_fwd1 and pDS132 vector specific primers pDS\_Seq\_rev resulting in 3.2 kbp DNA fragments. The correct insertion mutant was further verified phenotypically by HPLC-MS analysis for the loss of DAR production.

### Heatmap

The phylogenetic analysis was based on a 646 bp region of *recA* for different *Photorhabdus* and *Xenorhabdus* strains with *E. coli* as outgroup (9). The data obtained from the LC-MS spectra of the different strains was analyzed regarding the relative amount of produced compounds and connected to the results of the phylogenetic analysis. ESI HPLC MS analysis was performed with a Dionex UltiMate 3000 system coupled to a Bruker AmaZon X mass spectrometer using an Acquity UPLC BEH C18 1.7 µm RP column (Waters) as described previously (10).

# **Phylogenetic analysis**

The phylogenetic analysis of ketosynthases and LuxR-like proteins was calculated using the PHYML (11) algorithm with standard parameters. DarA (WP\_012794415.1), DarB (WP\_012794414.1) and DarC (WP\_012794409.1) from *Chitinophaga pinensis* DSM 2588, LuxI (WP\_005423459.1), full-length LuxR (WP\_005423460) and its HTH domain (aa 185-241) from *Aliivibrio fischeri* was used to search the *darB* encoding genomes. The underlying multiple sequence alignment was generated using the ClustalW (12) alignment also with standard parameters. For visualization and calculation of the alignment as well as the PHYML tree the

Geneious software (Biomatters Ltd., New-Zeeland) was used.

| Strain        | 1                                | Genotype                                                                         | Reference      |  |
|---------------|----------------------------------|----------------------------------------------------------------------------------|----------------|--|
| Р.            | P. asymbiotica Wild-type isolate |                                                                                  | (9)            |  |
| <b>PB68</b> . | 1                                |                                                                                  |                |  |
| Р.            | asymbiotica                      | Wild-type isolate                                                                | (13)           |  |
| ATCC          | C 43949                          |                                                                                  |                |  |
| Р.            | asymbiotica                      | PB68.1 $\Delta pauR::Km^{R}$ (pau_04062)                                         | This study     |  |
| PB68.         | 1 <i>ApauR</i>                   |                                                                                  |                |  |
| Р.            | asymbiotica                      | PB68.1 <i>darB::Km<sup>R</sup> (pau_02401)</i>                                   | This study     |  |
| PB68.         | 1 darB                           |                                                                                  |                |  |
| E. coli       | LMG194                           | $F^{-}\Delta lacX74$ galE galK thi rpsL $\Delta phoA$                            | (4)            |  |
|               |                                  | (PvuII) $\Delta ara714 \ leu::Tn10$                                              |                |  |
| E. coli       | S17-λpir                         | Tp <sup>R</sup> Sm <sup>R</sup> <i>recA thi pro hsdR</i> -M <sup>+</sup> RP4: 2- | Biomedal S.L., |  |
|               |                                  | Tc:Mu: Km Tn7 λ <i>pir</i>                                                       | Seliva, Spain  |  |
| E. coli       | ST18                             | E. coli S17 $\lambda pir \Delta hem A$                                           | (14)           |  |
| E. coli       | JM109                            | recA1 endA1 gyrA96 thi hsdR17 supE44 $\lambda$ relA1 $\Delta$ (lac-              | (15)           |  |
|               |                                  | $proAB$ //F' $traD36 proA^+B^+ lacI^q lacZ\Delta M15$                            |                |  |
| E. coli       | BL21 DE3                         | $F^-$ ompT gal dcm lon hsdSB(rB- mB) $\lambda$ (DE3)                             | (16)           |  |

#### Table S1: Strains.

# Table S2: Plasmids.

| Plasmid                    | Characteristics                                                                                                      | Reference                             |
|----------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| pBAD24                     | Expression vector, arabinose inducible promoter, Amp <sup>R</sup>                                                    | (4)                                   |
| pBAD- <i>pcfABCDEF</i>     | <i>pcfABCDEF</i> ( <i>pau_04068-pau_04063</i> )<br>operon in pBAD24                                                  | This study                            |
| pBAD-pcfABCDEF/pauR        | <i>pcfABCDEF</i> operon and <i>pauR</i><br>( <i>pau_04068-pau_04062</i> ) in pBAD24                                  | This study                            |
| pBR-Cherry                 | mcherry in pBR322                                                                                                    | (3)                                   |
| pBAD33                     | Expression vector, arabinose inducible promoter, Cm <sup>R</sup>                                                     | (4)                                   |
| pBAD-Cherry                | mCherry in pBAD33                                                                                                    | This study                            |
| pBAD-Cherry/ <i>pcfA</i>   | <i>pcfA</i> -promoter upstream of <i>mcherry</i> in pBAD33                                                           | This study                            |
| pBAD-Cherry/ <i>pauR</i>   | <i>pauR</i> -promoter upstream of <i>mcherry</i> in pBAD33                                                           | This study                            |
| pBAD-Cherry/ <i>darA</i>   | <i>darA</i> -promoter upstream of <i>mcherry</i> in pBAD33                                                           | This study                            |
| pBAD24-darABC/mtaA         | <i>darABC</i> -operon from <i>P. asymbiotica</i> and <i>mtaA</i>                                                     | (17)                                  |
| pACYC-bkdABC/ngrA          | <i>bkdABC</i> -operon and <i>ngrA</i> both from <i>P</i> .<br><i>luminescens</i>                                     | (18)                                  |
| pUC19                      | Cloning vector, Amp <sup>R</sup>                                                                                     | (15)                                  |
| pUC19-Kan                  | Km <sup>R</sup> cassette in pUC19                                                                                    | (H. Jung, München, Lab<br>Collection) |
| pUC-Kan- <i>pauR</i> -FA   | 600 bp upstream region of <i>pauR</i> cloned upstream of Km <sup>R</sup> cassette                                    | This study                            |
| pUC-Kan <i>-pauR</i> -AB   | 600 bp up- and downstream regions of $pauR$ cloned up- and downstream of Kan <sup>R</sup> ( <i>pauR</i> -interposon) | This study                            |
| pMRS101                    | Conjugation vector, R6K ori, pMB1 ori, Strep <sup>R</sup> , <i>sucB</i>                                              | (2)                                   |
| pMRS3-pauR-AB              | pauR-interposon in pMRS101                                                                                           | This study                            |
| pMRS3-1 <i>-pauR</i> -AB   | <i>pauR</i> -interposon in pMRS101, ΔpMB1<br>ori                                                                     | This study                            |
| pNPTS138-R6KT              | <i>mobRP4</i> <sup>+</sup> <i>ori</i> -R6K <i>sacB</i> ; suicide plasmid for deletions; Kan <sup>R</sup>             | (19)                                  |
| pNPTS138-R6KT <i>-darB</i> | Intergenic region of 577 bp of <i>darB</i> in pNPTS138-R6KT                                                          | This study                            |
| pBAD24-His-pauR            | pauR (pau_04062) in pBAD24 with N-                                                                                   | This study                            |

|                                       | terminal His-tag                                    |
|---------------------------------------|-----------------------------------------------------|
| pBAD24-His-pauR-T62A                  | Substitution of T62A in <i>pauR</i> This study      |
|                                       | ( <i>pau_04062</i> ) in pBAD24                      |
| pBAD24-His- <i>pauR</i> -Y66A         | Substitution of Y66A in pauR This study             |
|                                       | ( <i>pau_04062</i> ) in pBAD24                      |
| pBAD24-His-pauR-D75A                  | Substitution of D75A in <i>pauR</i> This study      |
|                                       | ( <i>pau_04062</i> ) in pBAD24                      |
| pBBR1-MCS5-TT-RBS-lux                 | <i>luxCDABE</i> and terminators lambda T0 (5)       |
|                                       | rrnB1 T1 cloned into pBBR1-MCS5                     |
|                                       | for plasmid-based transcriptional                   |
|                                       | fusions; Gm <sup>R</sup>                            |
| pBBR1-MCS5-TT-RBS-P <sub>pcfA</sub> - | <i>luxCDABE</i> under the control of the This study |
| lux                                   | <i>pcfA</i> ( <i>pau_04068</i> ) promoter           |

# Table S3: Oligonucleotides.

| Oligo                 | Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PauR_FA_SacI_fwd      | 5'-TAGCCGAGCTCGCACCATCACCCTGTTTCAG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PauR_FA_XmaI_rev      | 5'-TAGCCCCCGGGAAGATTTCTCTCATTAAATAAT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PauR_FB_SalI_fwd      | 5'-TAGCCGTCGACTAATTAGAGCCCGATTAAAG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PauR_FB_HindIII_rev   | 5'-TAGCCAAGCTTGGAAGACACGCTATTGCG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P04068_XmaI_fwd       | 5'-TAGCCCCCGGGTTTTCCGGTCAATGTGAAGAACAT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P04068_BamHI_rev      | 5'-TAGCCGGATCCGAAATTTTATTTATATAGC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P04062_XmaI_rev       | 5'-TAGCCCCCGGGAAGATTTCTCTCATTAAATAA-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P04062_BamHI_fwd      | 5'-TAGCCGGATCCCAACGCATCACATAACCCTG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PdarA_XmaI_fwd        | 5'-TAGCCCCCGGGATGTTCTAACCTTTATGGGTA-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PdarA_BamHI_rev       | 5'-TAGCCGGATCCCAATTTTATTATTATCTTG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mCherry-Seq_fwd       | 5'-CCCTTAGTAACTTTTAGC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAU_4062_NheI_sense_1 | 5'TAGCCGCTAGCGGCACCGCTGGAGAACGACTTTCC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAU_4068_PstI_anti_1  | 5'TAGCCCTGCAGGGTCATTTATTTATCCTATTCTATATG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PAU_4064_XmaI_sense_1 | 5'TAGCCCCCGGGTATGCCTACTGGGATAGATTTTTATC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PAU_4064_XmaI_anti_1  | 5'TAGCCCCCGGGGAAGTTAATTTGAGTGTTGCCCAGC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PAU_4063_PstI_sense_1 | 5'TAGCCCTGCAGCTATGAAATATAATTCGCCAAAATACC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PAU_4068_NheI_anti_1  | 5'TAGCCGCTAGCGGTCATTTATTTTATCCTATTCTATATG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PAU4062-His-NheI_fwd  | 5'-GAGGAAGCTAGCCGCACCACCATCATCACCATCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | CGGGATCTTATGAATACTTTATT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4062_Sall_rev         | 5'-TAGCCGTCGACTTATATGATTAGATTATATGC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| pBAD24_Seq_sense      | 5'-GCCGTCACTGCGTCTTTTACTGG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PAU_T62A_fwd          | 5'-TTTACACACAGAA GCA ATGGGTAA-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PAU_T62A_rev          | 5'-TTACCCAT TGC TTCTGTGTGTAAA-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PAU_Y66A_fwd          | 5'-CATGGGTAATGCTGATAAA-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PAU_Y66A_rev          | 5'-TTTATCAGCATTACCCATG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PAU_D75A_fwd          | 5'-CATGACAGT GCT CAACTAATG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PAU_D75A_rev          | 5'-CATTAGTTG AGC ACTGTCATG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P04068_XbaI_rev       | 5'-TAGCC TCTAGA GAAATTTTATTTATATAGC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| pNTPS_Seq_fwd         | 5'-GTCATATTTGCCCTCCTGG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PauR_check_fwd        | 5'-GTTAATGCTTCGATCCATCC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PauR_check_rev        | 5'-GCAAATTCTCGGTGCATTCC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Kan_RB_sense          | 5'-GGATTCATCGACTGTGGCCG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Kan_LB_anti           | 5'-CAGICATAGCCGAATAGCCI-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| darB_KI_EcoRV_fwd     | 5 - 1 A G C C G A T A T C C C C A A T A G A T A A T G A T A C A A T - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| darB_KI_Nhel_rev      | 5 -TAGCCGCTAGCCCGTGGTTTATTTTCAAGCA-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pDS_Seq_twd           | 5 - GCATGGGCATAAAGTTGCC-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| pus_seq_rev           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DarAB_Check_twd1      | 3 - 0 - 0 - 0 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 3 - 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DarAB_Uneck_rev1      | $\mathbf{S} = \mathbf{U} + $ |
| Cherry_AllII_twd      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cnerry_Sacl_rev       | 3 - TAGUU GAGUTU ATGGUAAUTAGUGGUATGGT-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table S4: The loss of PauR binding to compound 6 (DAR) in silico using the built-in residue scan function of MOE 2013.0802. A positive number indicates a loss of affinity or stability, respectively. To investigate the effect of single amino acid substitutions inside the PauR binding pocket considering the binding-affinity of PauR and it's ligand, a virtual mutagenesis was performed for T62, Y66 and D75. All three residues were replaced with alanine and with the in-built residue scan function of MOE 2013.0802 the ligand affinity and protein stability was predicted. For wild-type PauR an affinity and stability to the docked DAR (6) of -7.31 kcal/mol and -13.26 kcal/mol were calculated, respectively. The Y66A derivative showed the highest loss of ligand affinity with destabilizing increase of +1.64 kcal/mol for affinity and +4.27 kcal/mol for protein stability, for the D75A derivative a small change of ligand affinity (+0.39 kcal/mol) has been observed which could be explained with a rise in protein stability (-4.01 kcal/mol). The same is true for the T62A derivative, which showed a small loss of ligand affinity (+0.41 kcal/mol) while the protein stability is increased (-0.82 kcal/mol). These results indicate the change of DAR binding by these PauR derivatives and confirm the experimentally demonstrated importance for binding of Y66. As a control, similar experiments were performed with QscR (-10.68 kcal/mol affinity and -1.99 kcal/mol stability, respectively, for the QscR-AHL complex), which has also been characterized experimentally regarding amino acids required for AHL binding and all experimental data showing a decrease of AHL-binding could be confirmed in silico.

|                 | $\Delta$ ligand affinity | $\Delta$ protein stability |
|-----------------|--------------------------|----------------------------|
| PauR derivative |                          |                            |
| T62A            | +0.41                    | -0.82                      |
| Y66A            | +1.64                    | +4.27                      |
| D75A            | +0.39                    | -4.01                      |
| QscR derivative |                          |                            |
| S38A            | +0.10                    | -2.47                      |
| G40F            | +2.94                    | +11.47                     |
| S56G            | +0.60                    | +2.07                      |
| D75A            | +2.64                    | -2.37                      |
| V78F            | +2.08                    | +1.79                      |
| L82F            | +0.11                    | +2.95                      |

Table S5: Ketosynthases (KS) used for the phylogenetic tree. Referred to Fuchs *et al.* (17), all newly identified *darB* genes are shown in red.

|          | Protein                                                  | Organism                                                                          | Accession<br>number          |  |
|----------|----------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------|--|
|          | Closest BLAST-P hits for                                 |                                                                                   |                              |  |
| 1<br>2   | 3-Oxoacyl-ACP synthase III<br>3-Oxoacyl-ACP synthase III | <i>Burkholderia</i> sp. CCGE1001<br><i>Burkholderia phenoliruptrix</i><br>BR3459a | YP_004230959<br>YP_006793509 |  |
| 3<br>4   | 3-Oxoacyl-ACP synthase III<br>3-Oxoacyl-ACP synthase III | <i>Burkholderia</i> sp. CCGE1003<br><i>Burkholderia phytofirmans</i><br>PsJN      | YP_003910175<br>YP_001889944 |  |
| 5        | hypothetical protein                                     | Chlorogloeopsis                                                                   | WP_016876568                 |  |
| 6<br>7   | hypothetical protein<br><i>PpyS</i>                      | Anabaena sp. PCC 7108<br>P. luminescens subsp.<br>laumondii                       | WP_016949109<br>AGO97060     |  |
| 8<br>9   | 3-Ketoacyl-CoA thiolase<br>3-Oxoacyl-ACP synthase I      | <i>Pseudomonas</i> sp. GM30<br><i>Xenorhabdus bovienii</i> SS-<br>2004            | WP_007967127<br>YP_003469508 |  |
| 10       | 3-Oxoacyl-ACP synthase                                   | Xenorhabdus nematophila<br>ATCC 19061                                             | YP_003713506                 |  |
| 11       | 3-Oxoacyl-ACP synthase                                   | Xenorhabdus nematophila<br>ATCC 19061                                             | WP_010847197                 |  |
|          | Closest BLAST-P hits for XcIC                            |                                                                                   |                              |  |
| 12       | 3-Oxoacyl-ACP synthase                                   | C. acetobutylicum                                                                 | NP_347450.1                  |  |
| 13       | 3-Oxoacyl-ACP synthase                                   | P. lactis                                                                         | WP_007130623.1               |  |
| 14       | 3-Oxoacyl-ACP synthase                                   | B. thuringiensis                                                                  | YP_006930640.1               |  |
| 15       | 3-Oxoacyl-ACP synthase                                   | B. sp. 1NLA3E                                                                     | YP_007911827.1               |  |
| 16       | 3-Oxoacyl-ACP synthase                                   | O. scapharcae                                                                     | WP_010098042.1               |  |
| 17       | 3-Oxoacyl-ACP synthase                                   | P. polvmvxa                                                                       | YP_003947618.1               |  |
| 18       | 3-Oxoacyl-ACP synthase                                   | P polymyxa                                                                        | YP_003871436_1               |  |
| 19       | 3-Oxoacyl-ACP synthese                                   | P sp Aloe-11                                                                      | WP 007431139 1               |  |
| 20       | 3-Oxoacyl-ACP synthese                                   | P terrae                                                                          | YP 005077926 1               |  |
| 21       | 3-Oxoacyl-ACP synthase<br>FabH                           | P. peoriae                                                                        | WP_010345468.1               |  |
| 22       | CorB                                                     | Corallococcus coralloides                                                         | ADI59524                     |  |
| 23       | Myxopyronin ketosynthase                                 | Myxococcus fulvus                                                                 | AGS77282                     |  |
| 24       | FabHB                                                    | B. subtilis                                                                       | NP_388898                    |  |
| 25       | FabH                                                     | N. punctiforme                                                                    | YP_001865657                 |  |
| 26       | 3-oxoacyl-ACP synthase                                   | B. subtilis                                                                       | NP_389015.1                  |  |
| 27       | FabH                                                     | A. fabrum                                                                         | NP_354198                    |  |
| 28       | FabH                                                     | P. luminescens                                                                    | NP_930069                    |  |
| 29       | FabH                                                     | E. coli                                                                           | NP 287225                    |  |
| 30       | FabH                                                     | S ariseus                                                                         | YP 001826619                 |  |
| 31       | FabH                                                     | S echinatus                                                                       | AAV84077                     |  |
| 32       | NP 626634                                                | S coelicolor $A3(2)$                                                              | NP 626634                    |  |
| 22<br>22 | FahH                                                     | S avermitilis                                                                     | RAC73400                     |  |
| 24       | 05/206                                                   | S. averniuns<br>S. alaucascans                                                    | 05/206                       |  |
| 34<br>25 | GO4200<br>Edmo                                           | S. graucescens                                                                    |                              |  |
| 30       |                                                          | S. griseus                                                                        | AAQUOYZY                     |  |
| 30       |                                                          | 5. Sp. A2991200                                                                   | CAIVIAU                      |  |
| 37       |                                                          | 5. sp. K1120                                                                      | AAG30195                     |  |
| 38       |                                                          | S. roseotuivus                                                                    | AAU18104                     |  |
| 39       | Alni                                                     | S. sp CM020                                                                       | AC188883                     |  |
| 40       | UIEA                                                     | xanthomonas campestris<br>pv. campestris                                          | 3S21 (PDB)                   |  |
|          | KS type III PKS                                          |                                                                                   |                              |  |
| 41       | Chs-like                                                 | R. baltica                                                                        | NP_868579                    |  |
| 42       | BPS (PLN03172)                                           | H. androsaemum                                                                    | Q8SAS8                       |  |
| 43       | CHS H. (PLN03173)                                        | H. androsaemum                                                                    | Q9FUB7                       |  |

| 44                   | CHS9                          | M. sativa                  | AAA02827             |
|----------------------|-------------------------------|----------------------------|----------------------|
| 45                   | STS                           | P. auinauefolia            | AAM21773             |
| 46                   | BAS                           | R. palmatum                | AAK82824             |
| 47                   | BnsA                          | Bacillus subtilis str 168  | NP 390087            |
| 48                   | MXAN 6639                     | M xanthus                  | YP 634756            |
| 10                   | PKS10                         | M tuberculosis             | NP 216176            |
| <del>7</del> 0<br>50 |                               | M. tuberculosis            | ND 216191            |
| 50                   | Chat Concernizin              | Streptomycee op MK720      | NF_210101<br>(20)    |
| 51                   |                               |                            | (20)                 |
|                      | Relosynthase                  |                            | 0) (7)               |
| 52                   | Germicidin synthase           | Streptomyces coelicolor    | 3V7I_A               |
| 53                   | RppAS                         | S. antibioticus            | BAB91443             |
| 54                   | RppA                          | S. avermitilis             | NP_828307            |
| 55                   | RppB                          | S. antibioticus            | BAB91444             |
|                      | KS adjacent to XcIA           |                            |                      |
|                      | homologues                    |                            |                      |
| 56                   | 3-Oxoacyl-ACP synthase        | C. sp. PCC 7822            | YP_003899922.1       |
| 57                   | 3-Oxoacyl-ACP synthase        | N. punctiforme             | YP_001865657.1       |
| 58                   | 3-Oxoacyl-ACP synthase        | A. cylindrica              | YP_007155727.1       |
|                      | Closest BLAST-P hits for      |                            |                      |
|                      | XclB                          |                            |                      |
| 59                   | 3-Oxoacyl-ACP synthase III    | <i>B</i> . sp. EniD312     | WP_009111263.1       |
| 60                   | 3-Oxoacyl-ACP synthase III    | A. nasoniae                | CBA73264.1           |
| 61                   | 3-Oxoacyl-ACP synthase III    | P. carotovorum             | WP_010301235.1       |
| 62                   | 3-Oxoacyl-ACP synthase III    | P. pacifica                | WP_006975318.1       |
| 63                   | 3-Oxoacyl-ACP synthase III    | C. stagnale                | YP_007317906.1       |
| 64                   | 3-Oxoacvl-ACP synthase III    | N. punctiforme             | YP_001865628.1       |
| 65                   | 3-Oxoacyl-ACP synthase III    | R. sp. PCC 7116            | YP_007056099         |
| 66                   | 3-Oxoacyl-ACP synthase III    | S. cvanosphaera            | YP_007130807.1       |
| 67                   | 3-Oxoacyl-ACP synthase III    | Calothrix sp. PCC 6303     | YP_007138278         |
| 68                   | 3-Oxoacyl-ACP synthase III    | N punctiforme              | YP_001868566 1       |
| 69                   | 3-Oxoacyl-ACP synthese III    | R  sn  PCC 7116            | YP_007057764_1       |
| 00                   | ChIB6: Cer.I: KSIII DosC-like | N. 3p. 1 00 / 110          | 11_007007704.1       |
| 70                   | ChIB6                         | S antibioticus             | ۵۵77767 <u>9</u>     |
| 70                   | Corl                          | S. tendae                  |                      |
| 72                   | CosE                          | S. lendee<br>S. olindensis | AE191009<br>ABC00733 |
| 72                   |                               | S. Davidensis              | ADC00733<br>AAA65208 |
| 73                   |                               | S. peucellus               |                      |
| 74                   |                               | S. sp. SFB74               | ZP_04991200.1        |
| 15                   |                               | S. gaillaeus               | AAF70109             |
| 76                   | BAB/2048                      | S. gailiaeus               | BAB/2048             |
| //                   | PokM2                         | S. diastatochromogenes     | ACN64832             |
| 78                   | CalO4                         | S. aurantiaca              | ZP_01462124          |
| 79                   | FabH                          | S. erythraea               | YP_001107471         |
| 80                   | NdasDRAFT_3133                | N. dassonvillei            | ZP_04334033.1        |
| 81                   | ChIB3                         | S. antibioticus            | AAZ//6/6             |
| 82                   | CalO4                         | M. echinospora             | AAM70354             |
| 83                   | AviN                          | S. viridochromogenes       | AAK83178             |
| 84                   | PlaP2                         | S. sp. Tu6071              | ABB69750             |
| 85                   | CouN2                         | S. rishiriensis            | AAG29787             |
| 86                   | CloN2                         | S. roseochromogenes        | AAN65231             |
|                      | KS type I PKS                 |                            |                      |
| 87                   | Plu1885                       | P. luminescens             | NP_929153            |
| 88                   | NanA8                         | S. nanchangensis           | AAP42874             |
| 89                   | EryAll                        | S. erythraea               | YP_001102990         |
| 90                   | TylGI KSQ                     | S. fradiae                 | AAB66504             |
| 91                   | MerA                          | S. violaceusniger          | ABJ97437             |
| 92                   | TamAl                         | S. sp. 3079                | ADC79637             |
| 93                   | OleAl KSQ                     | S. antibioticus            | AAF82408             |
| 94                   | HedT                          | S. griseoruber             | AAP85336             |
|                      | Closest BLAST-P hits for      |                            |                      |
|                      | XcIF                          |                            |                      |
| 95                   | 3-Oxoacyl-ACP synthase        | R. blandensis              | WP_008043745.1       |

96 3-Oxoacyl-ACP synthase 97 3-Oxoacyl-ACP synthase 98 3-Oxoacyl-ACP synthase 99 3-Oxoacyl-ACP synthase 100 3-Oxoacyl-ACP synthase 101 3-Oxoacyl-ACP synthase 102 3-Oxoacyl-ACP synthase 103 3-Oxoacyl-ACP synthase 104 3-Oxoacyl-ACP synthase FabF 105 FabF 106 FabF 107 cpin1855 108 Dfer 1997 109 FabB 110 FabB 111 NP 416826 112 FabB Type II PKS KS β NP 344945 113 114 FabF FabF 115 116 FabF 117 NP 645683 118 FabF 119 FabF 120 FabF 121 NP 415613 122 FabF Type II PKS KS α 123 SimA2 124 TcmL 125 EncB 126 ActIA 127 NcnB FabB 128 AntD (Plu4191) 129 EncA 130 ActiB 131 NcnA 132 TcmK 133 SimA1 DarB 134 O3I\_37171 135 M446 0174 136 cpin6850 137 BFO 3187 138 NiasoDRAFT 0547 139 Mucpa 6793 140 Oweho 0889 141 CHU 0390 142 Fluta\_1447 Dfer\_5797 143 144 BZARG 2045 145 Lacal 2074 146 Aeqsu\_0932 147 Zobellia 2074 148 Lbys 1508

149

HMPREF0204\_10987

X. nematophila X. nematophila M. sp. PE36 P. profundum P. damselae P. sp. AK15 P. leiognathi P. sp. SKA34 P. angustum M. sp. 4-46 C. pinensis C. pinensis D. fermentans A. pleuropneumoniae C. sp. 30\_2 E. coli S. boydii S. pneumoniae T. thermophilus N. punctiforme B. subtilis S. aureus P. luminescens E. albertii E. coli E. coli S. avermitilis S. antibioticus S. glaucescens S. maritimus S. coelicolor A3(2) S. arenae P. luminescens S. maritimus S. coelicolor A3(2) S. arenae S. davawensis S. antibioticus N. brasiliensis *M.* sp. 4-46 C. pinensis T. forsythia N. soli M. paludis O. hongkongensis C. hutchinsonii F. taffensis D. fermentans B. argentinensis L. sp. 5H-3-7-4 A. sublithincola Z. galactanivorans L. byssophila C. gleum

YP 003714026.1 WP 010848687.1 WP 006034384.1 YP\_132684.1 WP 005305524.1 WP 007465048.1 WP\_008989540.1 WP 006644045.1 WP\_005364526.1 YP 001771620 ACU62401 YP 003121552 YP 003086385 ZP 00134992 ZP\_04562837 NP 416826 YP 001881145 NP\_344945 YP\_143679 YP\_001867862 NP\_389016 NP\_645683 NP\_930065 ZP\_02902779.1 NP 287229 NP 415613 BAC70003 AF324838 4 AAA67516 AAF81729 SCO5087 AAD20268 NP 931374 AAF81728 SCO5088 AAD20267 CCK26894 AAK06784 ZP\_09843377 YP 001767187 YP 003126452 YP\_005015826 ZP 09632794 ZP 09618305 YP\_004988545 YP\_677020 YP 004344279 YP 003090150 ZP 08820341 YP 004580348 YP\_006417450 YP 004736513 YP 003997574

ZP\_07085127

C. sp. CF314 B. taxon 274 str. F0058 C. taxon 338 str. F0234 C. gingivalis C. sp. CM59 C. taxon 335 str. F0486 C. taxon 412 str. F0487 C. sputigena C. ochracea C. ochracea C. ochracea W. virosa M. odoratimimus M. odoratus M. odoratimimus M. odoratimimus F. columnare F. psychrophilum *F*. sp. CF136 F. sp. F52 F. johnsoniae *F.* sp. JSC-11 M. aeruginosa D. psychrophila D. alkaliphilus delta proteobacterium MLMS-1 S. gotlandica S. gotlandica S. deleyianum S. barnesii A. nitrofigilis A. butzleri H. baltica P. arctica P. spongiae P. stutzeri P. mendocina P. fulva P. luminescens P. asymbiotica P. asymbiotica P. chlororaphis P. chlororaphis P. chlororaphis *P.* sp. GM17 D. aromatica A. sp. BH72 *R. ferrireducens* S. lithotrophicus V. sp. CF313 V. paradoxus V. paradoxus M. haemolytica M. haemolytica H. parainfluenzae H. pittmaniae A.segnis A. aphrophilus A. aphrophilus A. aphrophilus

ZP 10726507 ZP\_06983320 ZP\_08201061 ZP\_04056582 ZP\_10880679 EJF37460 ZP\_10366882 ZP 03390203 YP 003140666 EJF43732 ZP 07866642 YP 004238832.1 EKB07937 ZP 09672239 EKB04829 ZP\_09523568 YP\_004942963 YP\_001297136 ZP\_10730768 ZP\_10481912 YP 001193454 ZP 08987753 CCI22605 YP 065553 YP\_003690456 ZP 01289639 ZP 05070248 EHP29910 YP 003305165 YP 006405107 YP 003656468 ZP 07890833 YP 003061270 ZP\_10280196 ZP 10300425 AFN79642 YP 004378380 YP\_004472512 NP\_929424 CAR66906 YP\_003041237 ZP 10172862 AAN18032 EJL05977 ZP\_10707840 YP 285574 YP 931796 YP\_525203 YP 003522988 ZP 10567997 YP 002945272 YP 004154548 ZP 05992665 ZP 05988513 ZP 08147854 ZP 08755481 ZP 07888807 EGY32238 YP 003008155 EHB89432

| 210 | GCWU000324 02596 | K. oralis                  | ZP 04603113    |
|-----|------------------|----------------------------|----------------|
| 211 | EIKCOROL 00456   | E. corrodens               | ZP_03712789    |
| 212 | HMPREF9371 1043  | N. shaveqanii              | ZP_08886538    |
| 213 | HMPREF9370 1914  | N. wadsworthii             | ZP_08940206    |
| 214 | NEIFLAOT 02523   | N. flavescens              | ZP_03720660    |
| 215 | HMPREF0604 01363 | N. mucosa                  | ZP_07993739    |
| 216 | NEIFL0001_0036   | N. flavescens              | ZP_04757628    |
| 217 | NEISUBOT 03200   | N. subflava                | ZP_05983976    |
| 218 | NEISICOT 02133   | N. sicca                   | ZP_05318975    |
| 219 | HMPREF9418 1128  | N. macacae                 | ZP 08684521    |
| 220 | HMPREF1051 1749  | N. sicca                   | EIG27057       |
| 221 | HMPREF1028_00835 | N. sp. GT4A CT1            | ZP 08888860    |
| 222 | HMPREF9016 01947 | N. taxon 014 str. F0314    | ZP_06980826    |
| 223 | WP 019975306.1   | Empedobacter brevis        | WP 019975306.1 |
| 224 | WP_023570457.1   | Flavobacterium cauense     | WP_023570457.1 |
| 225 | WP_023573188.1   | Flavobacterium enshiense   | WP_023573188.1 |
| 226 | WP 026980395 1   | Flavobacterium             | WP_026980395.1 |
|     |                  | suncheonense               |                |
| 227 | WP 023575682.1   | Flavobacterium saliperosum | WP 023575682.1 |
| 228 | WP 025571904.1   | Flavobacterium sp. JGI     | WP 025571904.1 |
|     |                  | 0001001-D01                |                |
| 229 | WP 017496912.1   | Flavobacterium sp. WG21    | WP 017496912.1 |
| 230 | WP_026990035.1   | Flavobacterium             | WP_026990035.1 |
|     |                  | subsaxonicum               |                |
| 231 | WP 027392755.1   | Aquimarina latercula       | WP 027392755.1 |
| 232 | WP 029271432.1   | Flavobacterium sp. KJJ     | WP_029271432.1 |
| 233 | WP 028979582.1   | Sporocytophaga             | WP 028979582.1 |
|     |                  | mvxococcoides              |                |
| 234 | WP 026450863.1   | Aequorivita capsosiphonis  | WP 026450863.1 |
| 235 | WP_027374092.1   | Chryseobacterium sp.       | WP_027374092.1 |
|     | -                | UNC8MFCol                  | -              |
| 236 | WP_027378929.1   | Chryseobacterium           | WP_027378929.1 |
|     |                  | daeguense                  |                |
| 237 | WP_019944308.1   | Dyadobacter beijingensis   | WP_019944308.1 |
| 238 | WP_016870031.1   | Fischerella muscicola      | WP_016870031.1 |
| 239 | WP_026631596.1   | Dyadobacter alkalitolerans | WP_026631596.1 |
| 240 | WP_026309622.1   | Niabella aurantiaca        | WP_026309622.1 |
| 241 | WP_027412514.1   | Aquimarina muelleri        | WP_027412514.1 |
| 242 | WP_028121069.1   | Epilithonimonas tenax      | WP_028121069.1 |
| 243 | WP_028786430.1   | Terrimonas ferruginea      | WP_028786430.1 |
| 244 | WP_024771996.1   | Aquimarina macrocephali    | WP_024771996.1 |
| 245 | WP_027419181.1   | Crocinitomix catalasitica  | WP_027419181.1 |
| 246 | WP_025667393.1   | Aquimarina megaterium      | WP_025667393.1 |
| 247 | WP_021644787.1   | Bacteroides pyogenes       | WP_021644787.1 |
| 248 | AGY53864.1       | Bacteroidales bacterium CF | AGY53864.1     |
| 249 | WP_021071162.1   | Sphingobacterium           | WP_021071162.1 |
|     |                  | paucimobilis               |                |
| 250 | WP_023847326.1   | Porphyromonas gingivalis   | WP_023847326.1 |
| 251 | WP 015215107.1   | Anabaena cvlindrica        | WP 015215107.1 |

Table S6: LuxR-like proteins used for the phylogenetic tree. Sequences are ordered according to the phylogenetic tree from top to bottom.

|    | Protein                                                | Accession number |
|----|--------------------------------------------------------|------------------|
| 1  | P. chlororaphis O6 LuxR-like III                       | WP_009050747.1   |
| 2  | P. chlororaphis subsp. aurantiaca PB-St2 LuxR-like II  | ETD40528.1       |
| 3  | <i>P. savastanoi</i> AhIR                              | WP 004667792.1   |
| 4  | P. corrugata PcoR                                      | WP_024779118.1   |
| 5  | V. fischeri LuxR                                       | AAQ90208.1       |
| 6  | V. paradoxus EPS LuxR-like I                           | WP 013543355.1   |
| 7  | <i>M.</i> sp. 4-46 LuxR-like I                         | WP_012335163.1   |
| 8  | H. baltica ATCC 49814 LuxR-like I                      | WP_015826629.1   |
| 9  | A. tumefaciens TraR                                    | WP_010892389.1   |
| 10 | P. fluorescens PsoR                                    | WP_014717607.1   |
| 11 | P. syringae LuxRI                                      | WP_004656728.1   |
| 12 | R. sp. Y9602 LuxR-like I                               | WP_013577865.1   |
| 13 | S. meliloti NesR                                       | WP_018096762.1   |
| 14 | R. rubrum LuxR-like I                                  | WP_011390028.1   |
| 15 | X. campestris XccR                                     | WP_011037943.1   |
| 16 | X. campestris LuxR-like I                              | WP_011269597.1   |
| 17 | X. oryzae OryR                                         | AAR91700.1       |
| 18 | X. axonopodis XagR                                     | WP_029829276.1   |
| 19 | P. fluorescens MupR                                    | AAK28504.1       |
| 20 | P. aeruginosa LasR                                     | WP_003082999.1   |
| 21 | <i>P. putida</i> PpuR                                  | AAZ80478.1       |
| 22 | P. aeruginosa QscR                                     | WP_003160097.1   |
| 23 | P. asymbiotica PauR                                    | WP_015836138.1   |
| 24 | P. luminescens PluR                                    | WP_011148637.1   |
| 25 | <i>M. paludis</i> DSM 18603 LuxR-like I                | WP_008504649.1   |
| 26 | P. asymbiotica LuxR-like II                            | WP_012776445.1   |
| 27 | P. asymbiotica LuxR-like I                             | WP_012776448.1   |
| 28 | C. gingivalis ATCC 33624 LuxR-like II                  | WP_002670238.1   |
| 29 | F. psychrophilum JIP02/86 LuxR-like I                  | WP_011963028.1   |
| 30 | V. paradoxus S110 LuxR-like I                          | WP_015865859.1   |
| 31 | P. sp. GM17 PMI20 LuxR-like II                         | WP_007923195.1   |
| 32 | P. aureofaciens PhzR                                   | WP_009045585.1   |
| 33 | P. chlororaphis subsp. aureofaciens 30-84 LuxR-like II | WP_009045585.1   |
| 34 | P. chlororaphis O6 LuxR-like II                        | WP_009050817.1   |
| 35 | P. chlororaphis subsp. aurantiaca PB-St2 LuxR-like I   | WP_016703601.1   |
| 36 | S. enterica SdiA                                       | WP_001157166.1   |
| 37 | <i>P. aeruginosa</i> RhIR                              | WP_004351224.1   |
| 38 | P. aureofaciens CsaR                                   | WP_009043433.1   |
| 39 | P. chlororaphis subsp. aureofaciens 30-84 LuxR-like I  | WP_009043433.1   |
| 40 | P. sp. GM17 PMI20 LuxR-like I                          | WP_007923195.1   |
| 41 | P. chlororaphis O6 LuxR-like I                         | WP_009048517.1   |
| 42 | P. chlororaphis subsp. aurantiaca PB-St2 LuxR-like III | WP_023969002.1   |
|    |                                                        |                  |

Table S7: Genome analysis of 116 *darB* containing bacterial species or strains, regarding structure and assembly of the *darABC* operon, and the presence of *luxR* and *luxI genes*.

| Strain                                  | darA                 | darB                 | darC                 | luxR                    | luxl |
|-----------------------------------------|----------------------|----------------------|----------------------|-------------------------|------|
| Aequorivita                             | ORF 301              | ORF 302              | ORF 313              | ORF 19                  |      |
| capsosiphonis DSM                       | (scaffold7)          | (scaffold7)          | (scaffold7)          | (scaffold15)            |      |
| 23043<br>Aeguorivita                    |                      |                      |                      |                         |      |
| sublithincola DSM                       | Aeqsu_0800           | Aeqsu_0002           | Aeqsu_0921           |                         |      |
| Aggregatibacter                         | ATCC33389 0          | ATCC33389 0          | ATCC33389 0          |                         |      |
| aphrophilus ATCC<br>33389               | 195                  | 196                  | 162                  |                         |      |
| Aggregatibacter<br>aphrophilus F0387    | HMPREF9335<br>_01584 | HMPREF9335<br>_01583 | HMPREF9335<br>_01616 |                         |      |
| Aggregatibacter                         | NTO5HA_173           | NTO5HA_173           | NTO5HA_170           |                         |      |
| aphrophilus<br>NJ8700                   | 6                    | 7                    | 1                    |                         |      |
| Aggregatibacter                         | HMPREF9064           | HMPREF9064           | HMPREF9064           |                         |      |
| segnis ATCC<br>33393                    | _0175                | _0174                | _0152                |                         |      |
| Albidiferax<br>ferrireducens T118       | Rfer_3975            | Rfer_3974            | Rfer_3980            |                         |      |
| Anabaena                                | Anacy_3063           | Anacy_3064           |                      |                         |      |
| cylindrica PCC<br>7122                  |                      |                      |                      |                         |      |
| Aquimarina                              | ORF 311              | ORF 312              | ORF 321              |                         |      |
| latercula 2041                          | (scaffold10)         | (scaffold10)         | (scaffold10)         |                         |      |
| Aquimarina                              | ORF 69               | ORF 70               | ORF 81               | ORF 01                  |      |
| macrocephali                            | (scattold20)         | (scattold20)         | (scattold20)         | (scattold04);           |      |
| JAIVIB NZ7                              |                      |                      |                      | URF 15<br>(cooffold24): |      |
|                                         |                      |                      |                      | ORF 1                   |      |
|                                         |                      |                      |                      | (scaffold6)             |      |
| Aguimarina                              | ORF 15               | ORF 16               | ORF 27               | ORF 232                 |      |
| megaterium XH134                        | (scaffold24)         | (scaffold24)         | (scaffold24)         | (scaffold10)            |      |
| Aquimarina muelleri                     | ORF 47               | ORF 48               | ORF 58               |                         |      |
| DSM 19832                               | (scaffold19)         | (scaffold19)         | (scaffold19)         |                         |      |
| Arcobacter butzleri<br>JV22             | HMPREF9401<br>_0243  | HMPREF9401<br>_0244  | HMPREF9401<br>_0261  | HMPREF9401<br>_1717     |      |
| Arcobacter                              | Arnit_2309           | Arnit_2310           | Arnit_2315           |                         |      |
| nitrofigilis DSM<br>7299                |                      |                      |                      |                         |      |
| Azoarcus sp. BH72                       | azo0293              | azo0292              | azo0285              | azo0648                 |      |
| Bacteroidales                           | BRDCF_p123           | BRDCF_p123           | BRDCF_p123           | BRDCF_p158              |      |
| bacterium CF                            | 8                    | 7                    | 2                    | 0                       |      |
| Bacteroides                             | HMPREF1981           | HMPREF1981           |                      | HMPREF1981              |      |
| pyogenes F0041                          | _00060               | _00061               |                      | _00004,                 |      |
|                                         |                      |                      |                      | 02474 <sup>.</sup>      |      |
|                                         |                      |                      |                      | HMPRFF1981              |      |
|                                         |                      |                      |                      | 02785                   |      |
| Bacteroidetes oral t                    | ORF 67               | ORF 68               | ORF 53               |                         |      |
| axon 274 str. F005                      | (scaffold16)         | (scaffold16)         | (scaffold15)         |                         |      |
| 8                                       |                      |                      |                      |                         |      |
| <i>Bizionia argentinen</i><br>sis JUB59 | BZARG_2046           | BZARG_2045           | BZARG_2034           |                         |      |
| Capnocytophaga gi                       | CAPGI0001_2          | CAPGI0001_0          | CAPGI0001_0          |                         |      |
| ngivalis ATCC 3362<br>4                 | 416                  | 843                  | 776                  |                         |      |
| Capnocytophaga o                        | HMPREF1977           | HMPREF1977           | HMPREF1977           | HMPREF1977              |      |
| chracea F0287                           | _1455                | _1456                | _1722                | _1768;                  |      |
|                                         |                      |                      |                      | HMPREF1977<br>_2169     |      |
| Capnocytophaga o                        | HMPREF1319           | HMPREF1319           | HMPREF1319           | HMPREF1319              |      |
| chracea str. Holt 25                    | _0373                | _0374                | _0525                | _0572;                  |      |

|                              |                                       |                     |                     | HMPREF1319          |                    |
|------------------------------|---------------------------------------|---------------------|---------------------|---------------------|--------------------|
| -                            |                                       |                     |                     | _0952               |                    |
| Capnocytophaga s             | HMPREF1154                            | HMPREF1154          | HMPREF1154          | HMPREF1154          |                    |
| p. CIVI59                    | _0138<br>HMDDEE1320                   | _2288<br>HMDDEE1320 | _0352<br>HMDDEE1320 | _2343<br>HMDDEE1320 |                    |
| <i>p</i> oral taxon 335 str  | 1700                                  | 1701                | 1086                | 2182                |                    |
| . F0486                      |                                       |                     | _1000               | _2102               |                    |
| Capnocytophaga s             | HMPREF9071                            | HMPREF9071          | HMPREF9071          |                     |                    |
| p. oral taxon 338 str        | _1849                                 | _0527               | _0335               |                     |                    |
| . F0234                      |                                       |                     |                     |                     |                    |
| Capnocytophaga s             | HMPREF1321                            | MHPREF1321          | HMPREF1321          |                     |                    |
| <i>p.</i> oral taxon 412 str | _1155                                 | _1154               | _2121               |                     |                    |
| . FU487                      |                                       |                     |                     |                     |                    |
| nuticena ATCC 336            | 1213                                  | 1216                | 1050                | 1718                |                    |
| 12                           | 1210                                  | 1210                | 1000                | CAPSP0001           |                    |
|                              |                                       |                     |                     | 0637                |                    |
| Chryseobacterium             | ORF 333                               | ORF 334             | ORF 300             |                     |                    |
| daeguense 19338              | (scaffold2)                           | (scaffold2)         | (scaffold2)         |                     |                    |
| Chryseobacterium             | HMPREF0204                            | HMPREF0204          | HMPREF0204          | HMPREF0204          |                    |
| gleum ATCC 35910             | _10986                                | _10987              | _10997              | _11867;             |                    |
|                              |                                       |                     |                     |                     |                    |
| Chryseobacterium             | PMI13 02464                           | PMI13 02465         | PMI13 02475         | PMI13 01031         |                    |
| sp. CF314                    | 1 101113_02404                        | 1 10113_02403       | 1 10113_02473       | PMI13_02863:        |                    |
|                              |                                       |                     |                     | PMI13 03175         |                    |
| Chryseobacterium             | ORF 12                                | ORF 13              | ORF23               | ORF 4               |                    |
| sp. UNC8MFCol                | (scaffold21)                          | (scaffold21)        | (scaffold21)        | (scaffold7)         |                    |
| Myroides odoratus            | Myrod_1724                            | Myrod_1723          | Myrod_1713          | Myrod_0136          |                    |
| DSM 2801                     | D 1 1000 1 000                        | B 110004 000        | D 1 1000 1 0 17     | D 1 1000 1 0 10     | D 1 1000 4         |
| Pseudomonas                  | PCNI3084_396                          | Pcni3084_396        | Pcni3084_047        | Pcni3084_313        | PcnI3084           |
| chiororaphis subsp.          | 0                                     | /                   | 0                   | 0                   | _2449,<br>Pobl3084 |
|                              |                                       |                     |                     |                     | 4949               |
| Dechloromonas                | Daro_2367                             | Daro_2368           | Daro_2373           | Daro_3200           |                    |
| aromatica RCB                |                                       |                     |                     |                     |                    |
| Cytophaga                    | CHU_0391                              | CHU_0390            | CHU_0385            |                     |                    |
| hutchinsonii ATCC            |                                       |                     |                     |                     |                    |
| 33400<br>Elavobactorium      | Figh 1103                             | Figh 1102           | Figh 1080           | Figh 0173:          |                    |
| iohnsoniae UW101             | FJ011_1103                            | FJ011_1102          | FJ011_1009          | Fioh 4220           |                    |
| Methylobacterium             | M446 0173                             | M446 0174           |                     | 1 join_ 1220        | M446 54            |
| sp. 4-46                     |                                       | - <u>-</u> -        |                     |                     | 61                 |
| Dyadobacter                  | Dfer_5796                             | Dfer_5797           | Dfer_5802           |                     |                    |
| fermentans DSM               |                                       |                     |                     |                     |                    |
| 18053                        |                                       |                     |                     |                     |                    |
| ATCC 40814                   | Hbal_2903                             | HDal_2902           | HDal_1310           | HDal_0785           | HDal_182           |
| Chitinophaga                 | Cpin 6851                             | Cpin 6850           | Cpin 6845           | Cpin 0098           |                    |
| pinensis DSM 2588            | 0001                                  | 0000                | 0010                | 00000               |                    |
| Sulfurospirillum             | Sdel_2119                             | Sdel_2118           | Sdel_2124           | Sdel_0795           |                    |
| deleyianum DSM               |                                       |                     |                     | _                   |                    |
| 6946                         |                                       |                     |                     |                     |                    |
| Desulfurivibrio              | DaAHT2_0003                           | DaAHT2_1139         | DaAHT2_1123         |                     |                    |
| aikalipnilus AHTZ            |                                       | 01:4 0250           | 01:4 0254           |                     |                    |
| lithotrophicus ES-1          | SIII_0356                             | SIII_0359           | SIII_0354           |                     |                    |
| Leadbetterella               | Lbvs 1509                             | Lbvs 1508           | Lbvs 1496           |                     |                    |
| byssophila DSM               |                                       |                     |                     |                     |                    |
| 17132                        |                                       |                     |                     |                     |                    |
| Variovorax                   | Varpa_2230                            | Varpa_2231          | Varpa_3239          | Varpa_4471          |                    |
| paradoxus EPS                |                                       |                     | M/ 1 450 1          |                     |                    |
| VVEEKSEIla Virosa            | vveevi_1553                           | vveevi_1554         | vveevi_1564         |                     |                    |
| Fluviicola taffensis         | Fluta 1446                            | Fluta 1447          | Fluta 1439          | Fluta 3823          |                    |
| DSM 16823                    | · · · · · · · · · · · · · · · · · · · |                     | 1 1010_1400         | 1.1010_0020         |                    |
|                              |                                       |                     |                     |                     |                    |

| mendocina NK-01                           |                      |                      |                    |                                    |  |
|-------------------------------------------|----------------------|----------------------|--------------------|------------------------------------|--|
| Pseudomonas fulva<br>12-X                 | Psefu_0434           | Psefu_0435           | Psefu_0465         | Psefu_1602                         |  |
| Lacinutrix sp. 5H-3-                      | Lacal_2073           | Lacal_2074           | Lacal_2084         | Lacal_2230                         |  |
| Owenweeksia                               | Oweho_0890           | Oweho_0889           | Oweho_0884         | Oweho_3240                         |  |
| hongkongensis<br>DSM 17368                |                      |                      |                    |                                    |  |
| Tannerella forsythia<br>ATCC 43037        | BFO_3186             | BFO_3187             | BFO_1316           | BFO_1146;<br>BFO_1208;<br>BFO_2702 |  |
| Flavobacterium<br>columnare ATCC<br>49512 | FCOL_11850           | FCOL_11845           | FCOL_11795         | FCOL_05485                         |  |
| Sulfurospirillum<br>barnesii SES-3        | Sulba_2258           | Sulba_2257           | Sulba_2250         |                                    |  |
| Pseudomonas<br>stutzeri DSM 10701         | PSJM300_179          | PSJM300_179          | PSJM300_028        | PSJM300_177                        |  |
| Nocardia                                  | O3I 010630           | O3I 010635           | O3I 022670         | O3I 041485                         |  |
| brasiliensis ATCC<br>700358               |                      |                      |                    |                                    |  |
| Niabella soli DSM<br>19437                | NIASO_13195          | NIASO_13200          | NIASO_13500        |                                    |  |
| Desulfotalea<br>psychrophila LSv54        | DP3069               | DP1817               | DP1850             |                                    |  |
| Crocinitomix                              | ORF 8                | ORF 10               | ORF 15             | ORF 14                             |  |
| catalasitica ATCC                         | (scaffold9)          | (scaffold9)          | (scaffold9)        | (scaffold44);                      |  |
| 23190                                     |                      |                      |                    | (scaffold18)                       |  |
| delta proteobacteriu<br>m MLMS-1          | MIdDRAFT_38<br>84    | MIdDRAFT_40<br>65    | MIdDRAFT_38<br>49  |                                    |  |
| Dyadobacter                               | ORF 397              | ORF 398              | ORF 404            | ORF 30                             |  |
| alkalitolerans DSM                        | (scaffold12)         | (scaffold12)         | (scaffold12)       | (scaffold4);                       |  |
| 23607                                     |                      |                      |                    | (scaffold3)                        |  |
| Dyadobacter                               | ORF 2247             | ORF 2248             | ORF 2257           | ORF 3107                           |  |
| beijingensis DSM<br>21582                 | (scaffold10)         | (scaffold10)         | (scaffold10)       | (scaffold6)                        |  |
| Eikenella corrodens                       | EIKCOROL_0<br>0268   | EIKCOROL_0<br>0456   | EIKCOROL_0<br>2337 |                                    |  |
| Empedobacter                              | ORF 80               | ORF 81               | ORF 91             | ORF 195                            |  |
| brevis NBRC 14943                         | (scaffold27)         | (scaffold27)         | (scaffold27)       | (scaffold32)                       |  |
| Epilithonimonas                           | ORF 189              | ORF 190              | ORF 201            |                                    |  |
| Fischerella                               | ORF 27               | ORF 26               | ORF 12             |                                    |  |
| muscicola PCC                             | (scaffold177)        | (scaffold177)        | (scaffold174)      |                                    |  |
| 7414                                      |                      |                      |                    |                                    |  |
| Fischerella sp. JSC<br>-11                | FJSC11DRAF<br>T_3961 | FJSC11DRAF<br>T_3962 |                    |                                    |  |
| Flavobacterium                            | FCR2A7T_131          | FCR2A7T_131          | FCR2A7T_132        |                                    |  |
| cauense R2A-7                             | 20                   |                      | 20                 |                                    |  |
| enshiense DK69                            | 100                  | 90                   | 100                |                                    |  |
| Flavobacterium                            | FSS13T_0623          | FSS13T_0624          | FSS13T_0613        |                                    |  |
| saliperosum S13                           | 0                    | 0                    | 0                  |                                    |  |
| Flavobacterium sp.<br>CF136               | PMI10_02641          | PMI10_02642          | PMI10_02631        |                                    |  |
| Flavobacterium sp.<br>F52                 | FF52_12311           | FF52_12316           | FF52_12246         | FF52_06255;<br>FF52_17533          |  |
| Flavobacterium sp.                        | ORF 24               | ORF 23               | ORF 37             |                                    |  |
| JGI 0001001-D01                           | (scattold76)         | (scattold76)         | (scattold76)       |                                    |  |
| KJJ                                       | (scaffold2)          | (scaffold2)          | (scaffold2)        |                                    |  |
| Flavobacterium sp.                        | ORF 98               | ORF 97               | ORF 108            |                                    |  |
| WG21                                      | (scaffold15)         | (scaffold15)         | (scaffold15)       |                                    |  |
| L Elovabaatarium                          | L ()RE 88            | ORF 89               | ORF 98             | ()RF 94                            |  |

| subsaxonicum                                            | (scaffold7)            | (scaffold7)            | (scaffold7)            | (scaffold27)                                         |  |
|---------------------------------------------------------|------------------------|------------------------|------------------------|------------------------------------------------------|--|
| Flavobacterium                                          | ORF 186                | ORF 187                | ORF 192                |                                                      |  |
| suncheonense                                            | (scaffold8)            | (scaffold8)            | (scaffold8)            |                                                      |  |
| DSM 17707                                               |                        |                        |                        |                                                      |  |
| Haemophilus parai                                       | HMPREF9417             | HMPREF9417             | HMPREF9417             |                                                      |  |
| 392                                                     | _0590                  | _0595                  | _0562                  |                                                      |  |
| Haemophilus pittma                                      | HMPREF9952             | HMPREF9952             | HMPREF9952             |                                                      |  |
| Kingella oralis ATC                                     | _1025<br>GCWU000324    | _1024<br>GCWU000324    | _0505<br>GCWU000324    |                                                      |  |
| C 51147                                                 | _02598                 | _02596                 | _02637                 |                                                      |  |
| <i>Mannheimia haemo lytica</i> serotype A2 s tr. BOVINE | COK_0380               | COK_0379               |                        |                                                      |  |
| Mannheimia haemo<br>lytica serotype A2 s<br>tr. OVINE   | COI_2001               | COI_2002               |                        |                                                      |  |
| Microcystis aerugin<br>osa PCC 9808                     | MICAG_18200<br>12      | MICAG_18200<br>11      |                        |                                                      |  |
| <i>Mucilaginibacter pal udis</i> DSM 18603              | ORF 765<br>(scaffold7) | ORF 766<br>(scaffold7) | ORF 773<br>(scaffold7) | ORF 1985<br>(scaffold1);<br>ORF 5836<br>(scaffold3); |  |
|                                                         |                        |                        |                        | ORF 387<br>(scaffold7);<br>ORF 1150<br>(scaffold1);  |  |
|                                                         |                        |                        |                        | ORF 1558<br>(scaffold1)                              |  |
| Myroides odoratimi                                      | HMPREF9711             | HMPREF9711             | HMPREF9711             | HMPREF9711                                           |  |
| Myroides odoratimi                                      | _01095<br>HMPRFF9712   | _01094<br>HMPRFF9712   | _01097<br>HMPRFF9712   | _03065<br>HMPREF9712                                 |  |
| mus CCUG 10230                                          | _01160                 | _01161                 | _01158                 | _02855                                               |  |
| <i>Myroides odoratimi<br/>mus</i> CIP 103059            | HMPREF9716<br>_01580   | HMPREF9716<br>_01579   | HMPREF9716<br>_01569   | HMPREF9716<br>_00125;<br>HMPREF9716<br>_01207        |  |
| Photorhabdus                                            | Plu2163                | Plu2164                | Plu2165                | Plu0320;                                             |  |
| <i>luminescens</i> subsp.<br><i>laumondii</i> TTO1      |                        |                        |                        | Plu1817;<br>Plu4562;<br>Plu4274;<br>Plu4288          |  |
| Porphyromonas                                           |                        | PGN_0189               |                        | PGN_1373                                             |  |
| gingivalis ATCC                                         |                        |                        |                        |                                                      |  |
| Capnocytophaga<br>ochracea DSM                          | Coch_0548              | Coch_0547              | Coch_0744              |                                                      |  |
| Zobellia                                                | zobelia_2075           | zobelia_2074           | zobelia_2064           | zobelia_3220                                         |  |
| galactanivorans<br>Neisseria flavescen                  |                        |                        |                        |                                                      |  |
| s NRL30031/H210                                         | 525                    | 523                    | 589                    |                                                      |  |
| Neisseria flavescen<br>s SK114                          | NEIFL0001_0<br>039     | NEIFL0001_0<br>036     | NEIFL0001_1<br>239     |                                                      |  |
| Neisseria macacae                                       | HMPREF9418             | HMPREF9418             | HMPREF9418             |                                                      |  |
| ATCC 33926                                              |                        |                        |                        |                                                      |  |
| C102                                                    | _01365                 | _01363                 | _01385                 |                                                      |  |
| Neisseria shayegan<br>ii 871                            | HMPREF9371<br>_1041    | HMPREF9371<br>_1043    | HMPREF9371<br>_1824    |                                                      |  |
| Neisseria sicca AT                                      | NEISICOT_02            | NEISICOT_02            | NEISICOT_02            |                                                      |  |
| Neisseria sicca VK                                      | 135<br>HMPREE1051      | 133<br>HMPREE1051      | IZ8<br>HMPREE1051      |                                                      |  |
| 64                                                      | _1746                  | _1749                  | _1674                  |                                                      |  |
| Neisseria sp. GT4A                                      | HMPREF1028             | HMPREF1028             | HMPREF1028             |                                                      |  |
|                                                         |                        | 1 1 1 1 1 1 1 1        |                        |                                                      |  |

| Neisseria sp. oral ta               | ORF 66       | ORF 70       | ORF 82       |                         |                |
|-------------------------------------|--------------|--------------|--------------|-------------------------|----------------|
| xon 014 str. F0314                  | (scaffold20) | (scaffold20) | (scaffold20) |                         |                |
| Neisseria subflava                  | NEISUBOT_0   | NEISUBOT_0   | NEISUBOT_0   |                         |                |
| NJ9703                              | 3198         | 3200         | 3174         |                         |                |
| Neisseria wadswort                  | HMPREF9370   | HMPREF9370   | HMPREF9370   |                         |                |
| hii 9715                            | _1915        | _1914        | _1926        |                         |                |
| Niabella aurantiaca                 | ORF 726      | ORF 727      | ORF 1151     |                         |                |
| DSM 17617                           |              |              |              |                         |                |
| Photornabous                        | PA0_02402    | PA0_02401    | PA0_02400    | PAU_00252;              |                |
| asymbiolica                         |              |              |              | PAU 00255,              |                |
|                                     |              |              |              | PALL 03807              |                |
|                                     |              |              |              | PAU 04062               |                |
| Pseudoalteromona                    | PARC 10984   | PARC 10989   | PARC 10954   | PARC 05648:             |                |
| s arctica A 37-1-2                  |              |              |              | PARC 16911:             |                |
|                                     |              |              |              | PARC 133373             |                |
| Pseudoalteromona                    | PSPO 03655   | PSPO 03650   | PSPO 03675   | PSPO 01321;             |                |
| s spongiae UST010                   | -            | _            | _            | PSPO_02000;             |                |
| 723-006                             |              |              |              | PSPO_07959              |                |
| Pseudomonas chlor                   | PchIO6_4244  | Pchl06_4243  | Pchl06_0482  | Pchl06_2663;            | Pchl06_2       |
| oraphis O6                          |              |              |              | Pchl06_3394;            | 661;           |
|                                     |              |              |              | Pchl06_3471             | Pchl06_5       |
|                                     |              |              |              |                         | 139;           |
|                                     |              |              |              |                         | Pchl06_5       |
|                                     |              |              |              |                         | 218            |
| Pseudomonas                         | U724_29720   | 0724_29715   | 0724_27995   | U724_04375;             | 0724_20        |
| chiororaphis subsp.                 |              |              |              | 0/24_04815;             | 380;           |
| aurantiaca PB-St2                   |              |              |              | 0724_20385              | 0724_10        |
|                                     |              |              |              |                         | 400,           |
|                                     |              |              |              |                         | 750            |
| Pseudomonas sp.                     | PMI20 00701  | PMI20 00702  | PMI20 03176  | PMI20 01529:            | PMI20 15       |
| GM17                                |              |              |              | PMI20 02078;            | 30;            |
|                                     |              |              |              | PMI20_05272             | PMI20_01       |
|                                     |              |              |              |                         | 270            |
| Sphingobacterium                    | M472_06765   | M472_06770   | M472_06820   | M472_18005              |                |
| paucimobilis HER                    |              |              |              |                         |                |
| 1398                                |              |              |              |                         |                |
| Sporocytopnaga                      | ORF 3606     | URF 3608     | ORF 3630     | URF 16                  |                |
| myxococcoldes                       | (scanoldo)   | (scanolob)   | (scanolob)   | (scanoid 13);           |                |
| DSIVITITIO                          |              |              |              | URF 55<br>(ccoffold12): |                |
|                                     |              |              |              | ORE 573                 |                |
|                                     |              |              |              | (scaffold5)             |                |
|                                     |              |              |              | ORE 852                 |                |
|                                     |              |              |              | (scaffold2)             |                |
| Terrimonas                          | ORF 2536     | ORF 2540     | ORF 2558     |                         |                |
| ferruginea DSM                      | (scaffold10) | (scaffold10) | (scaffold10) |                         |                |
| 30193                               |              | · · · · ·    | · · · · ·    |                         |                |
| Variovorax paradox<br>us S110       | Vapar_3390   | Vapar_3389   | Vapar_2669   |                         | Vapar_58<br>08 |
| Variovorax sp. CF3<br>13            | PMI12_02024  | PMI12_02025  | PMI12_0548   | PMI12_00090             |                |
| Sulfurimonas                        | SMGD1_1387   | SMGD1_1386   | SMGD1_1381   |                         |                |
| gotlandica GD1                      |              |              |              |                         |                |
| <i>F. psychrophilum</i><br>JIP02/86 | FP2280       | FP2279       | FP2267       |                         |                |



Fig. S1: PauR neither senses exogenous PPYs nor exogenous AHLs. PauR does not sense different acyl-homoserinelactones or photopyrones (PPYD), but most specifically senses 2,5-dialkylresorcinol (DAR (6). *E. coli* LMG194 strains harbouring a  $P_{pcfA}$ -luxCDABE ( $P_{pcfA}$ -lux) fusion as well as pBADpauR were cultivated, and exposed to 3.5 nM PPYD, to N-butyryl-DL-homoserinelactone (C4-HSL), N-butyryl-DL-homocysteinthiolactone (C4-HCTL), N-3-oxo-hexanoyl-DL-homoserinelactone (3-oxo-C6-HSL), N-octanoyl-DL-homoserinelactone (C8-HSL), N-decanoyl-DL-homoserinelactone (C10-HSL), N-dodecanoyl-DL-homoserinelactone (C12-HSL), and N-tetradecanoyl-DL-homoserinelactone (C14-HSL), respectively, in concentrations of 1 nM, 10 nM, and 100 nM, respectively. As negative controls isopropanol and ethylacetate and as positive control 3.5 nM DAR (6) was added to the *E. coli* LMG194 cells harbouring a  $P_{pcfA}$ -luxCDABE ( $P_{pcfA}$ -lux) fusion as well as pBAD-pauR. Cells with no PauR or cells harbouring a luxCDABE operon without a promoter ( $P_{less}$ ) were used as controls as well. Error bars represent standard deviation of at least three independently performed experiments. RLU, relative light units.



**Fig. S2:** Phylogeny of different *Photorhabdus* strains and their production of CHD and DAR derivatives. Numbers refer to structures in Fig. 1C. Compound **3** (missing in this figure) is only produced in trace amounts in *P. asymbiotica* strains and is only visible after derivatisation (17).



Fig. S3: Growth phase dependent  $P_{pcfA}$  promoter activity in *P. asymbiotica*. Strains *P. asymbiotica* PB68.1 and *P. asymbiotica* PB68.1  $\Delta pauR$  carrying plasmid pBAD-Cherry/*pcfA* were cultivated, and after 16 h (early exponential phase) as well as 48 h (late stationary phase) microscopically analyzed for fluorescence. (a) Upper picture: phase contrast channel; lower picture: fluorescence channel (excitation wavelength: 546 nm). The figure represents one characteristic of at least three independently performed experiments. Fluorescence was quantified (b) using an "Infinite 500" plate fluorimeter. Error bars represent standard deviations of at least three independently performed experiments. RFU=relative fluorescence units.



Fig. S4: Dialkylresorcinol bioactivity. P. asymbiotica strain PB68.1 carrying plasmid pBAD-Cherry/pcfA from the late stationary growth phase ( $P_{pcfA}$  promoter activity is almost off) was exposed to different extracts (PB68.1 supernatant, PB68.1 darB::kan supernatant, E. coli LMG194 expressing darABC/bkd/ngrA and E. coli LMG194 harbouring empty plasmids) or pure compounds 6 and then analyzed for fluorescence in a fluorimeter. Fluorescence was quantified using an "Infinite 500" plate fluorimeter. Error bars represent standard deviations of at least three independently performed experiments. RFU=relative fluorescence units.



Fig. S5: Concentration-dependent  $P_{pcfA}$  induction by CHDs and DARs. *P. asymbiotica* PB68.1 strain carrying plasmid pBAD-Cherry/*pcfA* from the late stationary growth phase ( $P_{pcfA}$  promoter activity is almost off) was exposed to 350 nM, 35 nM, or 3.5 nM of 1, 3, 5, and 6, respectively. After incubation for 1 h at 37°C, fluorescence and cell clumping of the cells was analyzed in the microscope (a) and fluorescence was quantified using an "Infinite 500" (Tecan, Austria) plate fluorimeter (b). In (a) only concentrations of 3.5 nM of DARs and CHDs are shown. The bars indicate a scale of 10 µm. The figure represents one characteristic of at least three independently performed experiments. Error bars in (b) represent standard deviation of at least three independently performed experiments. RFU=relative fluorescence units.



Fig. S6: Growth-curve dependent  $P_{pauR}$ ,  $P_{pcfA}$ , and  $P_{darA}$  promoter activities in *P. asymbiotica* wildtype and *P. asymbiotica*  $\Delta pauR$ . *P. asymbiotica* PB68.1 or *P. asymbiotica* PB68.1  $\Delta pauR$  carrying plasmid pBAD-Cherry/pauR (a), pBAD-Cherry/pcfA (b), or pBAD-Cherry/darA (c), respectively, was aerobically grown at 37°C for 70 hours. The growth curve (GR) was measured for each strain and fluorescence (FL) using an "Infinite 500" (Tecan, Austria) plate fluorimeter was quantified for each strain. Error bars represent the standard deviation of at least three independently performed experiments. RFU=relative fluorescence units.



Fig. S7: Heterologous reconstruction of the DarABC/PauR cell-cell communication circuit in *E. coli*. *E. coli* LMG194 cells carrying plasmid pBAD24, pBAD-*pcfABCDEF* or pBAD-*pcfABCDEF/pauR* were cultivated, expression of the *pcfABCDEF* operon was induced by addition of 0.2% (w/v) arabinose or via the native promoter with 3.5 nM of **6**, and cells were analyzed for clumping by phase contrast microscopy. Additionally *E. coli* LMG194 cells carrying plasmid pBAD24, pBAD-*pcfABCDEF* or pBAD-*pcfABCDEF/pauR* was incubated with the supernatant of *E. coli* cells carrying *darABC/bkdABC* and *ngrA*, expression was induced with 0.2% (w/v) arabinose and 1 mM Isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG). Then, cells were analyzed for cell clumping (see white arrows) by phase contrast microscopy. Figures represent one of at least three independently performed experiments. Scale bars, 20 µm.



**Fig. S8: 3D Modelling of PauR.** Tertiary structure of the modeled PauR dimer from *Photorhabdus asymbiotica* (a). For the calculation of the PauR structure the tertiary structure of QscR (PDB ID: 3SZT) from *Pseudomonas aeruginosa* (b) was used as a template. To determine the quality of the docking procedure the co-crystallized QscR of *Pseudomonas aeruginosa* ligand (*N*-3-oxo-dodecanoyl-L-homoserine lactone) and the docked ligand (cyan) were superposed (c). The superoposition (d) of PauR (blue) and QscR (red) revealed a root-mean-square deviation (RMSD) of 1.5 Å.



**Fig. S9: Phylogenetic tree (PHYML) comprising different ketosynthases.** KS sequences are listed in SI Appendix, Table S5 and a zoomed version of the DarB branch is shown for clarity in SI Appendix, Fig. S10. The scale bar indicates the degree of divergence as substitutions per sequence position.



Fig. S10: Detailed phylogeny of *darB* (SI Appendix, Fig. S9), the corresponding arrangement of *darABC* in these genomes as well as the number of *luxR* and *luxI* genes identified are shown. A black arrow indicates *darA*, a grey arrow *darB* and a white arrow with a black frame *darC*. All identification numbers of identified genes are listed in SI Appendix, Table S7.



**Fig. S11: Phylogenetic tree (PHYML) comprising different LuxR-like proteins.** Red dots refer to known AHL-binding LuxR receptors (with the structure of the acyl side chain of their major AHL included in brackets). Black dots refer to LuxR sequences identified in DarB-containing genomes (which were also used for the generation of the KS phylogeny in SI Appendix, Fig. S9). LuxR-like proteins from plant associated bacteria (PAB) have been proposed to detect signals from plants (21). A list of all proteins and their accession numbers is provided in SI Appendix, Table S6. The scale bar indicates the degree of divergence as substitutions per sequence position.

# REFERENCES

- 1. Sambrook J, Fritsch EF, Maniatis T (1989) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Laboratory Pr). 2nd Ed.
- 2. Sarker MR, Cornelis GR (1997) An improved version of suicide vector pKNG101 for gene replacement in gram-negative bacteria. *Mol Microbiol* 23:410–411.
- 3. Münch A, Stingl L, Jung K, Heermann R (2008) *Photorhabdus luminescens* genes induced upon insect infection. *BMC Genomics* 9:229.
- 4. Guzman LML, Belin DD, Carson MJM, Beckwith JJ (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose  $P_{BAD}$  promoter. *J Bacteriol* 177:4121–4130.
- 5. Gödeke J, Heun M, Bubendorfer S, Paul K, Thormann KM (2011) Roles of Two *Shewanella oneidensis* MR-1 Extracellular Endonucleases. *App Env Microbiol* 77:5342–5351.
- 6. Heermann R, Zeppenfeld T, Jung K (2008) Simple generation of site-directed point mutations in the *Escherichia coli* chromosome using Red®/ET® Recombination. *Microb Cell Fact* 7:14.
- 7. Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. *J Bacteriol* 172:6557–6567.
- 8. Fried L, Lassak J, Jung K (2012) A comprehensive toolbox for the rapid construction of *lacZ* fusion reporters. *J Microbiol Methods* 91:537–543.
- 9. Thanwisai A et al. (2012) Diversity of *Xenorhabdus* and *Photorhabdus* spp. and Their Symbiotic Entomopathogenic Nematodes from Thailand. *PLoS ONE* 7:e43835.
- 10. Reimer D, Pos KM, Thines M, Grün P, Bode HB (2011) A natural prodrug activation mechanism in nonribosomal peptide synthesis. *Nat Chem Biol* 7:888–890.
- 11. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Syst Biol* 52:696–704.
- 12. Larkin MA et al. (2007) Clustal W and Clustal X version 2.0. *Bioinformatics* 23:2947–2948.
- 13. Wilkinson P et al. (2009) Comparative genomics of the emerging human pathogen *Photorhabdus asymbiotica* with the insect pathogen *Photorhabdus luminescens*. *BMC Genomics* 10:302.
- 14. Thoma S, Schobert M (2009) An improved *Escherichia coli* donor strain for diparental mating. *FEMS Microbiol Lett* 294:127–132.

- 15. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* 33:103–119.
- 16. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. *J Mol Biol* 189:113–130.
- 17. Fuchs SW et al. (2013) Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occuring ketosynthase. *Angew Chem Int Ed* 52:4108–4112.
- 18. Brachmann AO et al. (2013) Pyrones as bacterial signaling molecules. *Nat Chem Biol* 9:573–578.
- 19. Lassak J, Henche A-L, Binnenkade L, Thormann KM (2010) ArcS, the cognate sensor kinase in an atypical Arc system of *Shewanella oneidensis* MR-1. *App Env Microbiol* 76:3263–3274.
- 20. A two-step sulfation in antibiotic biosynthesis requires a type III polyketide synthase. (2013) A two-step sulfation in antibiotic biosynthesis requires a type III polyketide synthase. 9:610–5.
- 21. González JE, Venturi V (2013) A novel widespread interkingdom signaling circuit. *Trends Plant Sci* 18:167–174.