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Model Functions and Fitting Data to Obtain the Parameters. Fig. S1A
shows the functions we use for fr , fp, and fa. We used the fol-
lowing functional forms for them in Eqs. 5–7:
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The functions frðAÞ=f∞r and fpðAÞ=f∞p give the normalized de-
pendences of the respective rates on ATP concentration.
ðfp=f∞p Þ≈ 1 is a good approximation under fast growth; it reflects
the near independence of protein synthesis rate on ATP (1). The
empirical form frðAÞ=f∞r approximates complex regulations un-
derlying ribosome biogenesis and deployment (2) and derives
from a Michaelis–Menten (MM) expression

frðAÞ
f∞r

=
ðA−DrÞ

Dra + ðA−DrÞ; [S6]

where Dr is an activation energy to synthesize ribosome and Dra is
an affinity parameter. Comparing with experimental data, AðλÞ
provides similar activation, and the affinity parameters Dra ∼Dr
and substituting in the MM form gives Eq. S1. Its validity is ob-
served in Fig. 2B. Because frðAÞ is intended to capture the behavior
of increase and saturation with A, our results would be similar if we
choose other functional forms. Functions fgðGÞ and faðAÞ capture,
respectively, catabolism of glucose and its feedback inhibition (3).
Although the choices of frðAÞ, fgðGÞ, and faðAÞ affect the growth
law λðG; cmÞ and predictions in Fig. 4 C–H, they do not affect the
correlations ϕ− λ (Eqs. 16 and 17), e− λ (Eq. S16), the fitness
optimum (Eq. 14), and the flux matching (Eq. 15). Our modeling
here does not treat external molecules other than glucose.
We estimate the parameters piecewise by fitting our model

expressions with data as described below. (i) We get f∞p ∼ 0.7 and
γ ∼ 0.1 h−1 as the best fit of the data of the RP fraction vs. growth
rate using Eq. 16 with the known constant kp′=9.7 h−1 or 20 aa/s per
ribosome (Fig. 2A); (ii) we getDr ∼ 0.18 mM and λ∞ ∼ 1 h−1 as the
best fit of the data of ATP concentration vs. growth rate using Eq.
S11 (Fig. 2B); (iii) we get Da ∼ 4 mM,Dg ∼ 0:07 mM, and k∞a ∼ 120
h−1 by fitting one of the three analytical roots of Eq. 12 against data
of growth rate vs. glucose concentration (Fig. 2C); (iv) we choose
kr = λp ∼ 5 h−1 based on theory; and (v) frðAÞ+ fpðAÞ< 1 indicates
the cell is subsaturated with energy as far as ribosome function is
concerned. For our numerical ODE model f∞r + f∞p = 0:9 (Table 2)
implies 90% of ribosomes are active (4).

ATP as Cellular Energy Status. Energy status is upshifted with
growth rates in E. coli and is reflected in the concentration up-
shift of metabolites such as pyruvate and phosphoenolpyruvate
(5) and cofactors such as ATP, GTP, and NADH (6) with spe-
cific growth rates. Therefore, there are different choices that we

could have made for the internal energy cache, but ATP concen-
tration is a reasonable surrogate for any of them, because it corre-
lates, and ATP concentration does not violate stringent response,
the guanosine tetraphosphate (ppGpp)-mediated inhibition of ri-
bosome synthesis during amino acid starvation, because ppGpp
itself is derived from ATP (7).

The Fitness Expressions. Here we show the steps that we use for
deriving Eq. 12. Substituting the definitions of the rates Ja, Jr ,
and Jp (Eqs. 5–7) into Eq. 10 gives�

mrkrfr +mpkpfp
��R

P

�
= maka: [S7]

Further substituting Eq. 8 for R/P and using Eq. 9 converts Eq.
S7 to
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Defining the terms λp ≡ ðmpkp=mrÞ and λa ≡ ðmakaðGÞ=mpÞ* and
then rearranging Eq. S8 gives
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Based on observations (Fig. S2B), fp½AðGÞ� reaches constant
values with growth rates, so we make the approximation of
fp½AðGÞ�→ f∞p over the entire growth range. Next, to obtain the
cubic polynomial in λ (Eq. 12) and its coefficients, we expand Eq.
S9 completely in terms of λ by writing λa explicitly in terms of λ
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using the correlation of ATP concentration and λ from Eqs. 9, 11,
and S1

A=
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We get
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where the coefficients are
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*λa is the ratio of a cell’s total ATP generation flux to the ATP cost of making 1 NRP
molecule; it has units of hours−1 and represents a driver of biomass growth. It has an
impression of efficiency of the metabolic proteins for energy production and could also
be measured from experiments.
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and where we defined λ∞a = ðmak∞a Þ=mp and δ= 1+ ðDr=DaÞ. The
solution of Eq. S12 yields three real roots, of which only one
determines the observed glucose dependence of the specific
growth rate λðGÞ, the Monod law. It is readily found that
λ≡ λðGÞ in Eq. 12 gives a Monod-like growth function, the shape
of which depends on constants λ∞a , Dg, δ, λp; f∞p , λ∞, and γ.

Ribosomal Efficiency: The Net Peptide Elongation Rate. Here, we
derive the relationship between the peptide elongation rate kper
and ribosomal fraction ϕðλÞ. We begin by defining kper in terms
of fluxes Jr and Jp defined in Eqs. 5 and 6

kper =
�
Nr Jr +Np Jp · χ

��
R=Nr

�
λ+ kp′ fp ·

λ

λ+ γ

�
; [S14a]

= Nr
λ

ϕðλÞ: [S14b]

Here, Nr = 7336 and Np = 325 are the respective number of
amino acid residues per ribosome and NRP molecule, and the
latter’s likelihood for turnover is χ =

�
λ

λ+ γ

�
. In Fig. 5, we plot Eq.

S14a using fp = f∞p .

The Energy Efficiency e: Definition and Properties. We define the
energy efficiency of growth as the mass rate of proteins produced
per mole rate of ATP spent

«=
mass  flux  of   all  proteins  produced
molar  flux  of  ATP  synthesized

=
ρλ

ma Ja
; [S15]

and, it is expressed in units of gram-weight of cells per mole of
ATP consumed. Because energy is also spent in the synthesis of
nonprotein material, including lipids, carbohydrates, and fatty
acids, we make an estimate using the theoretical ATP require-
ments from Neijssel et al. (ref. 8, table 4) for E. coli growing in
glucose that our model is neglecting about 15% of the total
energy produced. Therefore, our estimate of « is overestimated
by this percentage. The protein density is denoted by ρ.
To derive Eq. 13, we start from Eq. S15 and substitute Eq. 10

for maJa
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In the second line, we replaced ϕ from Eq. 16. The term in the
square bracket of the denominator of the first equation is the
total cost of synthesizing all proteins (RP + NRP) per unit time
per ribosome. ð1=«rÞ and ð1=«pÞ are the respective costs of mak-
ing RPs and NRPs in units of moles of ATP per gram of ribo-
some or NRP. Experimental ϕðλÞ data can be transformed to
eðλÞ from Eq. S16 by eliminating kp′ fp via Eq. 16
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To derive Eq. 14, we substitute the constraint f∞r + f∞p = 1 into
Eq. S16 to get
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Then, to find the value f∞p = f∞;p
p that maximizes «ðf∞p Þ, we set the

derivative to zero, i.e., d«ðf∞p Þ=df∞p = 0, and solve for f∞p . This
gives the result shown in Eq. 14, where «rp = ð«p − «rÞ=«r , and we
removed small terms involving γ2 and γ3. It also gives the growth
rate at the point of optimal energy efficiency
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where «rp = ð«p − «rÞ=«r. Eqs. 14 and S19 do not depend on the
form of frðAÞ and fpðAÞ.
To split efficiency contributions from R and P components in

Fig. 4A, Eq. S16 can be exactly written as

e = er′+ ep′= er jr + ep

�
λ

λ+ γ

�
jp; [S20]

where jr = jrðλÞ= λ=ðλ+ λpfpÞ and jpðλÞ= 1− jrðλÞ are the frac-
tional ATP fluxes along the respective R and P paths, and the
factor

�
λ

λ+ γ

�
corrects ep due to protein turnover with rate γ.

Flux Matching at High Speeds.Here, we derive Eq. 15: λ∞ = krf∞r =
λaf∞p . First, we note that under fast-growth conditions, all ribo-
somes are busy either making ribosomes or making NRPs;
hence, under those conditions, we have the constraint

f∞r + f∞p = 1: [S21]

Under slower-growth conditions, some ribosomes are typically
unused. Under fast growth, we also have γ = 0. Now, λ≡
λðλa; kr; λpÞ is a function of three rates. By combining Eqs. S9,
11, and S21, we get
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The positive solution of Eq. S22 can be written as

λ∞=
λa

1+ λa=kr

�
1− β+ 2β2 −⋯



; [S23]

where we have simplified this expression by defining

β≡ λa
1
�
λp − 1=kr

ð1+ λa=krÞ2
; [S24]

for 0≤ jβj � 1=4. β is expected to be small in general. By setting
β≈ 0, a line of steepest ascent in the fitness landscape, we get
a limiting expression for growth rate (9)

λ∞ ∼ λp
λaðGÞ

λp + λaðGÞ: [S25]

Comparing against Eq. 11, we find that f∞r = λa=ðkr + λaÞ. Because
f∞p = 1− f∞r , we have f∞p = kr=ðkr + λaÞ, giving the result in Eq. 15.
An interesting result is an estimate of the relative rank ordering of

rate coefficients. By using f∞p = 0:8 and f∞r = 0:2, we get

λa < kr ≤ kp′: [S26]

This indicates that the slowest rate coefficient (under fast growth)
is λa, which characterizes metabolism and not the production of
protein.
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Fig. S1. (A) The rate functions fpðAÞ and frðAÞ for protein and ribosome synthesis, respectively, and faðAÞ for ATP as functions of ATP concentration. (B) Flux of
glucose, Ja, conversion to ATP, from experimental oxygen uptake rate data, JO, compared against model. We use the theoretical conversion factor Ja = JO=n
where n= 6 is the theoretical maximum number of moles of oxygen per mole of glucose for respiration. The converted data, × [Vemuri et al. (1)], exceeds the
model prediction by a factor of ∼1.7 (. . .), due to nonrespirational oxygen, not treated here.
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Fig. S2. (A) Fraction of ribosomes translating NRPs, fpðλÞ, is constant between moderate to fast growth rates, λ. Hence, we assume fpðλÞ= f∞p (solid red line).
fpðλÞ is computed from data, ϕðλÞ, via Eq. 16, where γ = 0:1 h−1. (B) Average time in seconds to extend an average NRP by one peptide bond, R=ðλ · PÞ vs. λ.
Symbols are for experimental data of ϕ=½λð1−ϕÞ�, from the following: ×, Scott et al. (1); +, Zaslaver et al. (2); ○, Bremer and Dennis (3); □, Forchhammer et al.
(4). Red line is the model prediction.
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