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SI Materials and Methods
Cultivation and Experimental Planning. Phaeodactylum tricornutum
(accession Pt1 8.6, the Provasoli–Guillard National Center for
Culture of Marine Phytoplankton) was maintained axenically in
sterile artificial seawater enriched with F/2 nutrients (1, 2). A set
of three optically thin, biologically independent cultures was
maintained under exponential growth conditions starting at 2.5 ×
105 cells/mL in UltraCruz flasks at 18 °C and 120–150 μmol
photons m−2s−1 continuous white light emitting diodes (LEDs)
and aerated through 0.2-μm filters. Cell densities were determined
using a Beckman Coulter Multisizer 3 (Beckman Coulter Inc.).
After 48 h of growth, cells were centrifuged, washed two times
with nitrogen-free, artificial seawater-based F/2, and split into
nitrogen-replete and -free conditions. To assure the largest con-
trast between the physiological states, both treatments were
sampled after 48 h. Cultures were sampled while the N-replete
culture was in exponential growth and the N-stressed culture
ceased dividing for 24 h; however, both cultures were still optically
thin. Cultures of the KD strain, NR21, were maintained under the
same conditions as the WT and supplemented with 100 μg/mL
Zeocin (R-250; Invitrogen).

Lipid Analyses. Lipids were extracted from ∼5 × 107 cells filtered
onto Whatman glass fiber filters (GF/F) using a modified Bligh
and Dyer (3) protocol as described previously (4). IPL analysis
was performed using HPLC/electrospray ionization MS (4) on an
Agilent 1200 HPLC and Thermo TSQ Vantage Ion Trap MS.
Total extracts were analyzed for TAGs by nonaqueous reverse-
phase HPLC/atmospheric pressure chemical ionization MS (5)
on an Agilent 1200 HPLC and Agilent 1200 Single-Quadrapole
MS. We identified distinct TAGs by their mass spectra using the
protocol described by Holčapek et al. (5, 6). For analysis of
cellular lipids in the WT and NR21 strain, we measured the
amount of FAMEs in exponentially growing cultures as pre-
viously described (7–9).

Protein Analysis. For determination of the amounts of protein
subunits, cultures were spun down at 4 °C and frozen in liquid N2.
Samples were resuspended in 1× denaturating lithium dodecyl
sulfate extraction buffer, and proteins were extracted by sonica-
tion (Qsonica). Total protein concentration was measured using
a modified Lowry assay (DC 500–0111; Bio-Rad) and a Spec-
traMax M3microplate reader (Molecular Devices) at 750 nm.
BSA served as the comparative protein standard.
Abundance of four independent protein subunits was detected

by Western blotting. For anti-NR and anti-DGAT2D, we used
our own custom-made anti-rabbit antibodies (Thermo Scientific
and Pierce Antibody Products) at 1:500–1:1,000 dilution. For the
photosynthetic subunits, we used Agrisera antibodies, anti-PsbA
(AS01 016), and anti-RbcL (AS03 037) at 1:10,000 dilution.
HRP-conjugated goat anti-rabbit IgG HRP secondary antibody
(A6154; Sigma-Aldrich) was used as a secondary antibody for all
samples; 1–10 μg total protein was separated electrophoretically
on precast 4–20% Tris-glycine extended (TGX) gels (Bio-Rad),
and proteins were transferred to PVDF membranes using
a Trans-Blot Turbo Dry Transfer System and Transblot Turbo
PVDF Transfer Packs (Bio-Rad). Blots were developed with
Amersham ECL Select Detection Reagent (RPN2235; GE
Healthcare). The blots were quantified using a ChemiDoc MP
Imaging System (Bio-Rad) and the Image Lab software (Bio-Rad).

Quantification of NR mRNA Copies—Real-Time Quantitative PCR.
Samples for quantitative PCR (qPCR) were pelleted by centrifug-
ing 5 × 107 cells for 8 min at 6,000 × g using a Sorvall RC6+
Centrifuge (Thermo Scientific) at 4 °C. The samples were frozen
in liquid N2 and stored at −80 °C. Total RNA was extracted using
an RNAeasy Plant Mini Kit (Qiagen) followed by removal of
DNA contamination using Ambion Turbo DNase (AM1907;
Life Technologies). PCR was performed to confirm that there
was no DNA contamination. Total RNA quantification and
quality assessment were made spectrophotometrically with
a Nanodrop 1000 (Thermo Scientific). cDNA was generated
using oligodT as primers and a SuperScript III Kit (12574-026;
Life Technologies) and directly used as the template for qPCR.
Primers for NR gene were designed with National Center for
Biotechnology Information Primer-BLAST (www.ncbi.nlm.
nih.gov/tools/primer-blast/). qPCR was performed using the
Applied Biosystems SYBR Green PCR Master Mix (4309155;
Life Technologies) on a Mx3000P QPCR System (Agilent
Technologies). Standard plasmids with the NR sequence were
generated by cloning the NR amplicon onto a TOPO TA Vector
(Life Technologies). A serial dilution of the plasmid as the standard
curve (five orders of magnitude) was run together with the unknown
biological samples for copy number calculation (8). All standard
curves had an r2 > 0.94. The qPCR amplification of the samples
was compared with the calibration curve to calculate the gene copy
number present.

NR Activity Assay.NR activity was measured following the method
described by Eppley (10) with modifications (11). Triplicates
samples (5 × 106 cells) of exponentially growing WT and NR21
cultures were harvested on a 25-mm glass fiber filter (GF/F) and
homogenized in 1 mL ice-cold extraction buffer [200 mM
phosphate buffer, pH 7.9, 1 mM DTT, 0.3 (wt/vol) polyvinyl
pyrrolidone, 3% (wt/vol) BSA, 0.1% Triton, 5 mM EDTA] using
a glass Teflon homogenizer. The slurries were centrifuged at
4,300 × g for 5 min at 4 °C, and the supernatant was removed and
used immediately for the assay. Assays were conducted in a total
volume of 1 mL containing final concentrations of 200 mM
phosphate buffer (pH 7.9) and 2.5 μM NADH in 200 μL su-
pernatant. To begin the assay, KNO3 was added at a final con-
centration of 10 μM, and samples were incubated at 20 °C for
45 min. The reaction was stopped by adding 2 mL zinc acetate
solution to a final concentration of 0.18 M. The solution was
centrifuged shortly, and the supernatant was transferred to clean
Eppendorf tubes; 100 μL color developer (sulfanilamide, N-
(1 naphtyl)-ethylenediamine.2HCl) was added, and samples were
incubated for 30 min at room temperature before reading their
absorbance at 543 nm. The activity was calculated against
a standard curve as units per cell, where one unit of enzyme
activity catalyzes the conversion of 1 μmol substrate to product
per minute.

Analysis of RNA-Seq Data. After aligning the raw data to
P. tricornutum’s version 2.0 set 10,402 filtered gene models (genome.
jgi.doe.gov/Phatr2/Phatr2.info.html), files were filtered to re-
trieve uniquely aligned reads with no more than three mis-
matches. Gene counts (unique aligned reads per gene) were used
for DE analysis carried out using the DESeq R/Bioconductor
package (12), which infers DE based on the negative binomial
distribution. For this analysis, we used a cutoff of 5% to control
for false detection rate (false positives) and considered only
genes that had a log twofold change greater than or equal to ±2
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and a false detection rate < 0.05 to be DE. To define the changes
in biochemically important pathways and/or physiological func-
tion, we set 16 gene categories (Dataset S1) that represent major
biochemical and regulatory functions. To establish the path-
way boundaries, we assigned genes using the Diatomcyc (www.
diatomcyc.org/) guidelines and the KEGG database (13) and
manually using publications inserted into the databases (14, 15).
DESeq’s output for all 10,402 genes was submitted to the Gene
Expression Omnibus under accession no. GSE56346, and all reads
were deposited to the National Center for Biotechnology In-
formation’s Short Read Archive under accession no. SRP040703.

Calculation and Analysis of the Computational Metabolic Flux
Prediction. To calculate this correlation, we used the uncen-
tered Pearson product–moment correlation, which is a popular
measure of the linear correlation between two variables:

max
virr · girr

kvirrkkgirrk

subject  to
�

Sv= 0
aj ≤ vj ≤ bj

;

where virr is a flux vector representing the reaction rates of the
irreversible reactions in the network, and girr is a vector indicat-
ing corresponding gene expression data. We used the set of
irreversible reactions when maximizing the correlation, because
the directions of reversible reactions are undefined, whereas
gene expression data values are always positive. The predicted
fluxes were normalized by growth rates measured under the
N-replete and N-depleted conditions (8, 9). The metabolic fluxes
layout was generated by Cytoscape v.2.8.3 (16).

Constructing the NR Inverted Repeat Vector. For constructing the
inverted repeat part of the vector, we chose to focus on the
NADH binding domain at the C terminus of the sequence (17).
We amplified 250- and 400-bp fragments corresponding to NR
gene sequence from 2,338 to 2,587 bp and from 2,338 to 2,737 bp
by PCR using the primers with EcoRI and XbaI restriction sites
(underlined). The primers sequences (5′ to 3′) were NR-F:
CCCGAATTCGTTTTACAATCGACGCCG; NR-R1: CCCT-
CTAGAGAAGACCCAGCTGTCA; and NR-R2: CCCTCTA-
GATTGTGACCAAGGCTC. The two fragments shared the

first 250 bp. Both long and short fragments were amplified and
digested by EcoRI and XbaI and ligated into an EcoRI-linear-
ized pKS-Sh ble-FA vector to form a sense and an antisense
hairpin based on the XbaI site of the two amplicons to make
a pKS-Sh ble nrIR-FA vector. The vector was propagated using
heat shock transformation of One Shot TOP10 Chemically
Competent Escherichia coli (C4040-10; Invitrogen) and purified
using the QIAprep Spin Miniprep Kit (27104; Qiagen). To verify
the sequence of the fragment that was inserted to the plasmid, the
purified plasmids were submitted for sequencing (Genewiz Inc.).

Genetic Transformation and Screening for Transformants. Five
micrograms pKS-Sh ble nrIR-FA vector was coated onto M17
tungsten particles (1.1 μm) according to the manufacturer’s in-
structions (Bio-Rad). Approximately 5 × 107 P. tricornutum cells
were plated on 1% agar plates (50% F/2) and incubated for
several hours before the transformation. The cells were bom-
barded with the DNA-coated M17 at 1,550 psi using a PDS-1000/
He Particle Delivery System (Bio-Rad) as previously described
(18). The plates were incubated at 100 μmol photons m2 s−1

constant illumination at 18 °C for 48 h to recover. Cells were
then replated onto selective 1% agar plates (50% F/2) with 880
μM NH4Cl as the sole nitrogen source and 50 μg/mL phleomycin
(ant-ph; Invitrogen). Plates were incubated at 40 μmol photons
m2 s−1 for 1 mo to enable putative silent clones to grow. The in-
sertion of the introduced DNA into the strain was verified by PCR
of the antibiotic-resistant gene.
Three independent transformations with our plasmid yielded

170 colonies. To select for the best clone, cells were grown in
liquid f/2, starved for nitrogen (48 h), and then incubated in fresh
media (culture concentration − 2 × 105 cells/mL) with 880 μM
NaNO3 as the sole nitrogen source. Each culture was then split
into two cultures. One was treated with a final concentration of
17 mM chlorate (ClKO3), and the other served as a control.
Based on the ability of the NR to reduce chlorate to toxic
chlorite ion (ClO2

−) (19), cells that exhibited the highest survival
rates 5 d after the addition of the chlorate were chosen for ad-
ditional analysis. Of 170 colonies, six strains were analyzed for
their growth rates, PSII photosynthetic yields, FAMEs, C and N
content, TAG amount, and NR activity under nitrogen-replete
exponential growth (data not shown). The strain that exhibited
∼50% NR activity and 20% increase in FAMEs amount (NR21)
was chosen for additional studies.
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Fig. S1. Distribution and relative abundance of specific TAGs and IPLs in P. tricornutum grown under nitrogen-stressed and -replete conditions. Data are
presented as percentage of the carbon in a specific lipid from the total amount of carbons allocated to either TAG or IPL. Dark gray circles represent the
percentages of the cellular carbon allocated to total TAGs and IPLs for each condition.
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Fig. S2. Transcripts abundance (nitrogen-stressed/nitrogen-replete) of genes from 16 gene families that are central to P. tricornutum metabolic and regu-
latory pathways. Changes are denoted as the percentage of up-regulated (red), NDE (gray), and down-regulated genes (blue) within each gene family. The full
description of the gene families and assigned genes with their fold change, false detection rate (FDR), and description can be found in Dataset S1.
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(B) TAG biosynthesis. The genes are noted with gene numbers and names. The full description of the genes, exact fold-change values, and false detection rate
can be found in Dataset S1. ACP, acyl carrier protein; FABD, malonyl-CoA:ACP transacylase; FABF and FABB, 3-oxoacyl-[acyl-carrier-protein] synthase; FABZ, 3R-
hydroxyacyl-[acyl carrier protein] dehydrase; GPT1, glycerol-3-phosphate o-acyltransferase; HYP, hypothetical protein; KAS1 and FABG, beta ketoacyl-coa
synthase; LPT1, 1-acyl-sn-glycerol-3-phosphate acyltransferase; PDC, pyruvate dehydrogenase complex; PDAT, phospholipid:diacylglycerol acyltransferase.

Levitan et al. www.pnas.org/cgi/content/short/1419818112 5 of 7

www.pnas.org/cgi/content/short/1419818112


Table S1. Lipid analysis for P. tricornutum grown under N-replete and N-starved conditions: IPL

IPL

N-replete N-starved
Ratio (N-starved
to N-replete)Fmol/cell Cellular C (%) Fmol/cell Cellular C (%)

Specific IPL amount
Total 2.43 ± 0.15 8.4 0.87 ± 0.13 2.5 0.36
MGDG 0.47 ± 0.61 2.3 0.06 ± 0.01 0.2 0.13
DGDG 0.67 ± 0.09 2.0 0.21 ± 0.03 0.6 0.32
SQDG 0.63 ± 0.19 1.9 0.54 ± 0.08 1.6 0.85
PG 0.49 ± 0.06 1.4 0.02 ± 0.01 0.1 0.04
PE 0.05 ± 0.00 0.1 0.00 ± 0.00 0.0 0.07
PC 0.26 ± 0.09 0.7 0.03 ± 0.01 0.1 0.12
DGTS 0.01 ± 0.00 0.0 0.00 ± 0.00 0.0 —

DGTA 0.01 ± 0.00 0.0 0.00 ± 0.00 0.0 —

Molar ratios (%)
Galactolipids/IPL 32 ± 1.0 6 ± 1.0 0.19
Phospholipids/IPL 39 ± 0.5 69 ± 0.5 1.77
SQDG/IPL 28 ± 0.6 24 ± 0.6 0.89
Betain lipids/IPL 0.8 ± 0.0 0.0 ± 0 —

Ratios between lipids classes
IPL/TAG 12 ± 2.4 0.5 ± 0.17
SQDG/PG 1.4 ± 0.0 11.3 ± 2.7
PE/PC 0.2 ± 0.0 0.1 ± 0.0

Data are presented in femtomoles per cell and percentage of the carbons allocated to the specific lipid or total lipid subclass (IPL or
TAG) from the total cellular carbon. DGDG, digalactosyldiacylglycerol; DGTA, diacylglyceryl hydroxymethyltrimethyl-β-alanine; DGTS,
diacylglyceryltrimethylhomoserine; MGDG, monogalactosyldiacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG,
glycerophosphoglycerols; SQDG, sulfoquinovosyldiacylglycerol.

Table S2. Lipid analysis for P. tricornutum grown under N-replete and N-starved conditions: TAG

TAG

N-replete N-starved
Ratio (N-starved
to N-replete)Fmol/cell Cellular C (%) Fmol/cell Cellular C (%)

Specific TAG amount
Total 0.21 ± 0.05 0.8 1.9 ± 0.11 12.3 8.9
PEE (16:0, 20:5, 20:5) 0.00 ± 0.00 0.0 0.02 ± 0.00 0.2 —

PoPoE (16:1, 16:1, 20:5) 0.00 ± 0.00 0.0 0.13 ± 0.02 0.8 —

PoME (16:1, 14:0, 20:5) 0.00 ± 0.00 0.0 0.02 ± 0.02 0.1 —

MOLn (14:0, 18:1, 18:3) 0.00 ± 0.00 0.0 0.00 ± 0.00 0.0 —

MPE (14:0, 16:0, 20:5) 0.00 ± 0.00 0.0 0.05 ± 0.02 0.3 —

PPoE (16:0, 16:1, 20:5) 0.02 ± 0.00 0.0 0.06 ± 0.01 0.4 3.72
PoPoPo (16:1, 16:1, 16:1) 0.00 ± 0.00 0.0 0.16 ± 0.04 1.0 —

PoPoM (16:1, 16:1, 14:0) 0.00 ± 0.00 0.0 0.01 ± 0.01 0.0 —

PoPoL (16:1, 16:1, 18:2) 0.00 ± 0.00 0.0 0.06 ± 0.03 0.4 —

PPE (16:0, 16:0, 20:5) 0.00 ± 0.00 0.0 0.09 ± 0.03 0.7 —

PoPoP (16:1, 16:1, 16:0) 0.09 ± 0.01 0.3 0.68 ± 0.19 4.5 7.48
PoPoS (16:1, 16:1, 18:0) 0.00 ± 0.00 0.0 0.06 ± 0.02 0.4 —

PoPP (16:1, 16:0, 16:0) 0.12 ± 0.04 0.4 0.50 ± 0.19 3.3 4.29
OOO (18:1, 18:1, 18:1) 0.00 ± 0.00 0.0 0.03 ± 0.02 0.2 —

Specific FA from total TAG (%)
14:0 0 1 —

16:0 52 36 0.69
16:1 47 52 1.69
18:0 0 1 —

18:1 0 1 —

18:2 0 1 —

18:3 0 0 —

20:5 1 8 8.40

Data are presented in femtomoles per cell and percentage of the carbons allocated to the specific lipid or total lipid subclass (IPL or
TAG) from the total cellular carbon. The different TAGs are denoted according to their FAs content. The different FAs are marked as
follows: M, 14:0; P, 16:0; Po, 16:1; S, 18:0; O, 18:1; L, 18:2; E, 20:5.
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Table S3. Calculation of the cellular fluxes of reductant directed to photosynthetic carbon fixation and nitrate reduction in the WT and
nitrogen-starved P. tricornutum and the NR21 strain: The allocation reductant between carbon fixation and nitrate reduction

Strain, condition μ (d−1)
Cellular C
(mol/cell)

Cellular N
(mol/cell)

C:N
(mol:mol) CO2:O2

Cellular reductant
to C fixation (%)

Cellular reductant
to nitrate (%)

WT, N-replete 0.80 1.5 × 10−12 2.5 × 10−13 5.70 0.74 74 26
WT, N-starved 0.30 7.8 × 10−13 4.68 × 10−14 17.08 0.90 90 10
NR21, N-replete 0.53 1.9 × 10−12 2.7 × 10−13 7.16 0.78 78 22

Table S4. Calculation of the cellular fluxes of reductant directed to photosynthetic carbon fixation and nitrate reduction in the WT and
nitrogen-starved P. tricornutum and the NR21 strain: Calculated daily cellular NADPH flux

Strain, condition
Photosynthetic

quotient

Flux of
photosynthetically
fixed C (mol/d) O2 flux (mol/d) Electron flux (mol/d) NADPH flux (mol/d)

WT, N-replete 1.35 1.16 ×10−12 1.57 × 10−12 6.27 × 10−12 3.13 × 10−12

WT, N-starved 1.12 2.34 × 10−13 2.62 × 10−13 1.05 × 10−12 5.23 × 10−13

NR21, N-replete 1.28 1.01 × 10−12 1.30 × 10−12 5.19 × 10−12 2.59 × 10−12

Table S5. Calculation of the cellular fluxes of reductant directed to photosynthetic carbon fixation and nitrate reduction in the WT and
nitrogen-starved P. tricornutum and the NR21 strain: Fraction of NADPH required for the reduction of carbon into FAMEs

Strain, condition
Cellular C allocated

to FAMEs* (%)
C in FAMEs
(mol/cell)

Flux of C to FAMEs
(mol/d)

NADPH flux in FAME
synthesis (%)

WT, N-replete 0.14 2.00 × 10−13 1.60 × 10−13 5
WT, N-starved 0.28 2.20 × 10−13 6.60 × 10−14 13
NR21, N-replete 0.21 4.00 × 10−13 2.10 × 10−13 8

Calculations are based on experimental results (C per cell, N per cell, μ, and FAMEs per cell) and a steady-state growth model adapted from Falkowski et al. (1).
*Data are from Fig. 1.

1. Falkowski PG, Dubinsky Z, Wyman K (1985) Growth-irradiance relationships in phytoplankton. Limnol Oceanogr 30(2):311–321.

Dataset S1. A summary of all of the genes assigned to 16 gene categories, including their log2 fold change, false detection rate, and
metabolic description

Dataset S1

Metabolic descriptions were added after our bioinformatics analysis that include information given in Diatomcyc and JGI databases and the P. tricornutum
Digital Gene Expression Database.
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