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1. Construction of the E. coli gene expression compendium from high-
throughput data sources 
1.1 Microarray data sources 
Microarrays rapidly became the preferred tool for high-throughput gene expression studies and 
although RNA-Seq will ultimately render the microarray technology obsolete, it is still used in 
some large-scale systems biology studies (Carrera et al, 2009; Carrera et al, 2012) and has the 
highest representation in gene expression data repositories (Faith et al, 2008; Yilmaz et al, 2011). 
Similar to previous work for Escherichia coli, Shewanella oneidensis and Saccharomyces 
cerevisiae (Faith et al, 2008) and extensions through the DREAM challenge for Staphylococcus 
aureus (Marbach et al, 2012), we have collected single-channel data from individual 
investigators, GEO, ArrayExpress and ASAP to create the largest gene expression compendium 
for E. coli. Importantly, we curated all experimental metadata included in our compendium from 
the respective publications, thus converting each chemical, strain, media, genetic modifications, 
and growth attributes into a structured and computable set of experimental features with 
consistent naming conventions and units. 

1.1.1 Affymetrix E. coli Antisense Genome Arrays. 
A total of 1,196 chips were downloaded from GEO (Platform ID: GPL 199). Microarray 
normalization was done using Robust Multi-chip Averaging (RMA) through the software 
RMAExpress. All raw data Affymetrix files (CEL files) were uploaded into RMAExpress and 
normalization was done as one batch. All arrays were background adjusted, quantile normalized, 
and probesets were summarized using median polish. Normalized data was exported as log-
transformed expression values. Mapping of Affymetrix probeset ids to gene ids was done using 
the library files made available from Affymetrix. Completion of these steps resulted in a total of 
4,345 genes over the 1,196 microarrays. 

1.1.2 Affymetrix E. coli Genome 2 Arrays. 
In total, 747 Affymetrix E. coli Genome 2 chips with available raw data were downloaded from 
GEO (Platform ID: GPL 3154) and compiled. Another 255 arrays that measured gene expression 
of rewired TRNs (Baumstark et al., 2013 – in submission) were added to the compendium. 
RMAExpress was also used here for RMA normalization. All arrays were background adjusted, 
quantile normalized, and probesets were summarized using median polish. Normalized data was 
exported as log-transformed expression values.  Mapping of Affymetrix probeset ids to gene ids 
was done using R and the Bioconductor software packages to annotate E. coli genes with unique 
Entrez IDs.  Control probesets and probesets that did not map unambiguously to one gene were 
removed. When multiple probesets were mapped to a single gene, expression values were 
averaged within each chip. Completion of these steps resulted in a total of 4,291 genes over the 
1,002 microarrays. 

1.2 Platform integration: E. coli Microarray Affymetrix Compendium (EcoMAC). 
Platform Integration: We integrated the results from (1.1.1) and (1.1.2) into a common database 
compendium, that we named EcoMAC. To do so, we only selected genes found in both platforms 
and we uniformly normalized the data by using microarray quantile normalization in Matlab 
R2012a as shown in Suppl. Fig. 1A. Completion of microarray normalization and gene filters 
resulted in a compendium that consists of the expression of 4,189 genes over 2,198 conditions 
collected from 127 scientific articles published from 114 different laboratories (see Suppl. File 
1). 



Transcription Factor and Enzyme annotation: We used two sources to define the list of 
potential transcription factors (TFs): (i) RegulonDB v8.1 (Salgado et al., 2013); and (ii), the 
DREAM5 dataset (Greenfield et al., 2010), where known and putative TFs were identified based 
on their Gene Ontology (GO) annotation. A total of 328 genes were designated as potential TFs. 
Next, we used a recent study focused on the E. coli metabolism (Orth et al., 2011) to identify all 
genes catalyzing metabolic reactions. We identified 1,357 enzymes in our gene list, four of which 
were also categorized as TFs (putA, alaS, pepA and nadR). 

The microarray compendium and gene list are supplied in the Suppl. File 1. In addition to the 
gene expression data, Suppl. File 2 contains the following attributes: (a) database accession 
number or source ID, (b) author and date information, (c) strain information, (d) medium and 
treatment information, (e) temporal information for the experiment (time series, phase of growth), 
(f) experiment type (knockout, overexpression, rewiring, reshuffling). Raw CEL files can be 
downloaded upon request for further processing. 

Strain and condition distributions: The EcoMAC compendium includes data from 31 strains 
and 15 mediums (Suppl. Fig. 2 and Suppl. Fig. 3, respectively). From the 2,198 arrays, 718 
arrays correspond to genetic perturbation experiments (knockout, overexpression, rewiring, 
reshuffling) and 332 arrays correspond to environmental perturbations (variation in carbon, 
nitrogen, phosphate, or metal sources, aerobic and anaerobic conditions, or supplemented media), 
while the rest of the 1148 arrays come from a high diversity source of experiments to study 
biofilm formation or microbial adaptive evolution. From the 31 strains that are present in the 
EcoMAC compendium, the MG1655, BW25113 and EMG2 strains are the most prevalent with 
more than 76% of arrays present (Suppl. Fig. 2). Similarly, from the 15 medium types, LB and 
M9 were over-represented, with more than 85% of arrays (Suppl. Fig. 3). We have identified 90 
arrays that contain the gene expression of MG1655 E. coli cells at the exponential and stationary 
phase that were grown in aerobic conditions, M9 salt, LB media, and 2g/L glucose as the sole 
carbon source. In this study, we have defined these conditions to be the wild type (WT) or 
“ground” conditions, while experimental settings that deviate from this configuration are 
classified as environmental perturbations (332 arrays). We found 518 arrays where the genetic 
perturbations were imposed on TFs or enzymes (437 and 81 arrays, respectively, Suppl. Fig. 1B). 

Next, we quantified the number of genes perturbed in at least one array characterized by having 
genetic or environmental perturbations in EcoMAC. Interestingly, we found 141 different genes 
altered by accounting gene knockouts, gene over-expression, TF rewirings and TFs directly 
affected by different environmental perturbations. Fig. 3A depicts all TF perturbations presented 
in EcoMAC. The cluster coefficient of the TRN is 0.122, with 21 connected components, 
diameter equal to 8 links, a characteristic path length of 2.871 links, and an average number of 
4.494 TFs regulating all genes. 

1.3 Gene expression variability analysis within EcoMAC 
We analyzed the gene expression diversity across the different conditions contained in the 
EcoMAC compendium. For this purpose, we used two similarity metrics that describe the 
distance between each array and the gene expression corresponding to the WT conditions. First 
we calculated the relative error between the target (yc) and WT (yWT) gene expression profile for 
condition c, as follows:  

݁ ൌ
ଵ

ே
∑ ฬ

௬
ି௬

ೈ

௬
ೈ ฬே   (1), 



where ܰ is the number of genes in the EcoMAC and ݕௐ் is the gene expression of a WT array. 
Notice that we defined a pseudo-array as the gene expression average of all WT arrays. ݕௐ் was 
selected by minimizing the distance with respect to the pseudo-array. Similarly, we used the 
Pearson correlation coefficient (PCC) given by ܲ ൌ ,ݕ൫ߩ  ௐ்൯ as a second measure ofݕ
diversity. High values of ec and low values of PCC imply high deviation in gene expression with 
respect to the wild-type pattern, and vice versa for low ec and high PCC values (Suppl. Fig. 4). 

1.4 EcoPhe: A phenomics data compendium 
We identified 616 arrays in EcoMAC, where the bacterial growth rate is reported in the 
corresponding scientific articles, with growth rate values ranging from 0.09 to 2.14 h-1 (Suppl. 
Fig. 1). More than 84% of those arrays were implemented in MG1655 strain, and 27% and 60% 
were measured on M9 and LB media respectively. Additionally, 28% of the arrays were 
measured in different times of experiments related to time series, 14% were related to studies in 
evolution, and 54% of the arrays were measured in the exponential or mid-exponential phase of 
growth. 

  



2. Transcriptional interaction dataset for E. coli 
2.1 Experimentally verified interactions.   
We used all interactions reported in RegulonDB v8.1 that were experimentally validated to 
support the existence of regulatory interactions. After removing those interactions that included 
genes that are not present in EcoMAC, we compiled a list of 3,704 regulatory interactions, 115 of 
which were auto-regulatory interactions (3.1%) (Suppl. File 3).  Positive interactions are slightly 
more represented than negative interactions (1,807 vs. 1,664), with 233 interactions being dual in 
nature. Then we created 3 sets of data based on the confidence level of the included interactions: 
1. A first set with 566 “confirmed” evidence interactions (at least two independent types of 
experimental validation). 2. A second set that includes all 566 confirmed, and another 2,517 
“strong” evidence interactions where a low throughput high confidence method was used (e.g., 
foot-printing, site mutation, protein binding) for a total of 3,083 interactions. 3. A third set that 
includes all 3,704 interactions, with 711 of them based only on “weak” evidence (RNA-Seq, 
ChIP-Seq). 

2.2 Computationally inferred interactions 
We used the results from Marbach et al. (Marbach et al, 2012) that provide 1,468 interactions 
identified with high precision (TP/TP+FP >0.5) by 35 network inference algorithms that were 
applied to 805 arrays (that constitutes 37% of arrays in EcoMAC) over 487 different 
experimental conditions. 

In addition, we built a consensus network from EcoMAC by using the three highest ranked 
inference algorithms that were a part of the DREAM5 challenge (Marbach et al, 2012), namely 
the Inferelator (Greenfield et al., 2010), GENIE3 (Huynh-Thu et al., 2010), and TIGRESS (Haury 
et al., 2012) methods. Inclusion of the CLR (Faith et al., 2007) and ANOVA methods (Küffner et 
al., 2012) decreased the predictive ability of the meta-classifier, possibly due to the lack of 
reference arrays for ANOVA and the fact that Inferelator already incorporates an extended 
version of CLR as a pre-processing step. Ranking of the putative interactions in the meta-
classifier was performed equal to Marbach et al. (Marbach et al, 2012), where the rank r of 

interaction i over N inference methods are given by ܴܽ݊݇ ൌ
ଵ

ே
∑ ሺ݅ሻݎ
ே
ୀଵ . 

Two gold standards were used from RegulonDB v8.1, one that includes only 566 confirmed 
interactions (i.e. interactions that have at least two strong evidence types) and another that 
includes 3,083 strong interactions. For reference, we used the dataset used in the DREAM5 
evaluation as the third gold standard (2,066 connections with mixed strong and weak evidence 
based on RegulonDB v6.8). We compared the results of the community network generated by the 
3 or 35 methods over these three testing datasets. All the datasets and a ranked list of the new top 
connections (not included in the golden standards) in the top ranked 365 inferred connections that 
correspond to 0.5 precision, can be found in Suppl. File 4. The comparison results are presented 
in Suppl. Fig. 5.  

It is evident in Suppl. Fig. 5E-F that the inference using the EcoMAC dataset gives better results 
than using the DREAM5 arrays, both with the consensus/ensemble techniques and the 3 
individual methods. Figures 5A-D show the performance of the inference against two golden 
standards, one containing the confirmed RegulonDB v8.1 connections (A-B) and the other 
containing the strong connections (C-D). The performance in ROC is better than the DREAM5 
equivalents.  



The parameters used for each algorithm follow in summary: (a) GENIE3, Tree method: Random 
Forests; number of randomly selected variables at each node of a tree: square root of the number 
of transcription factors, sqrt(328) = 18; number of trees grown in an ensemble: 1000; (b) 
TIGRESS, number of bootstraps: 100; randomization parameter alpha for stability selection in 
[0,1]: 0.2; number of LARS steps at each iteration of stability selection: 5; scoring method: 
"area"; (c) Inferelator, maximum number of regulators for each target gene: 30; number of 
bootstraps performed: 1; time scale in which regulatory interactions take place (τ): 10. The top 
100,000 predictions were used for evaluation from each method. The GO term and enrichment 
analysis was performed in Cytoscape, with the Bingo package and in DAVID v6.7. The enriched 
categories and the corresponding genes are in Suppl. File 4. From the top 500 computationally 
inferred interactions (that corresponds to Precision 0.45, 0.13 recall-TPR and 0.005 FPR on the 
meta-classifier; Suppl. Fig. 3C), the most enriched biological processes are response to stimulus 
(169 interactions), response to external stimulus (89 interactions), locomotion - locomotory 
behavior - taxis (81 interactions), and cell motility - localization of cell - ciliar or flagellar 
motility (33 interactions)  (Fig. 3D). 

2.3 Correlation of gene expression between TFs and their target genes. 
We used the PCC as a measure of correlation between the expression profiles of the TFs and their 
targets (experimental and inferred interactions), and compared the results to a null model of 
random TF-gene pairs. We performed an analysis for the experimentally-validated interaction set 
(3,704 interactions, Suppl. Fig. 6A and 6C), and for the experimentally-validated plus 
computationally-inferred interactions (5,172 interactions, Suppl. Fig 6B and 6D). In both cases, 
candidate TF-gene pairs exhibit levels of similarity in expression significantly higher than 
random TF-gene pairs (Kolmogorov-Smirnov test p < 10-10 and Mann-Whitney test p < 10-10). 
We also computed the slope for both lognormal PCC distributions (with p < 10-10), with a higher 
slope found in the random case. 

  



3. Construction of a signal transduction compendium for E. coli 
3.1 The EcoST database: Signal transduction mechanisms and sources 
The inclusion of a signal transduction model is essential to capture the information flow both 
between the environment and cellular mechanisms, as well as among cellular components. In this 
work, we focused on the signal transduction as it pertains to gene regulation of TF genes. To that 
end, we curated various databases (EcoCyc (Keseler et al, 2012) and RegulonDB (Salgado et al, 
2013)) and more than 150 publications to identify 151 instances of signal transduction systems 
(STSs) where the expression level of one or more TFs is regulated by the presence of effector 
molecules (Suppl. Fig. 7A). Interestingly, 71 of these TF-effector interactions fall under one of 
the following four types of auto-regulation: (a) Type I (28 instances): the TF represses its own 
expression in the absence of an inducer, while de-repression occurs at its presence (e.g., lldR and 
L-lactate; Suppl. Fig. 7A and Suppl. Fig. 8A), (b) Type II (11 instances): the TF represses its 
own expression in the presence of the effector (e.g., fur and iron; Suppl. Fig. 7B and Suppl. Fig. 
8A), (c) Type III (4 instances): two component systems where a histidine kinase sensor is auto-
phosphorylated in the presence of an effector and transfers the phosphate to the actual TF that can 
in turn positively (3 instances) or negatively (1 instance) regulate its own expression (e.g., dpiA 
and citrates Suppl. Fig. 7C) and (d) Type IV (28 instances) where the effects in the gene 
expression of the TF are empirically observed in presence of the effector but the corresponding 
mechanism is not clear (e.g., fhlA and formate; Suppl. Fig. 7E). The remaining 80 signal-
mediated regulatory interactions were described in literature, but they did not show a significant 
change in gene expression levels in presence of the effectors. Suppl. File 5 contains information 
on all the signal transduction systems that we considered. 

3.2 Signal transduction model 
To model the effect of STSs on gene expression, we considered both the case where the effector 
concentration impacts the abundance of the corresponding TF, and the case where the effector 
binds to the TF and alters its structural conformation and functionality. In the first case, we 
defined a linear constraint to describe the TF expression, ்ݕி, as a function of changes in 
environmental signals, ∆݊ா: 

yTF  yTF
wt  CTF

max CTF
min  TF

E nE

nE
max

  (2), 

where ்ݕி
௪௧, ்ܥி

, and ்ܥி
௫ are the wild-type, minimum, and maximum expression values of the 

TF gene obtained from EcoMAC.  Δ݊ா
௫ (effector strength) is an empirical parameter that 

characterizes the levels of environmental signals (mmol/gDW) where the TF expression reaches 
its minimum or maximum level. ∆݊ா is the change in concentration of the environmental signal, 
(݊ாௌ െ ݊ாௌ

௪௧), from the reference levels (WT environment). Similarly, ்߯ி
ா  is a parameter that 

represents whether the TF expression increases (்߯ி
ா ൌ 1) or decreases (்߯ி

ா ൌ െ1) when the 
effector is present. The global parameter Ω was used to fine-tune the STSs, and more information 
how it is trained can be found in Section 4.1. 

In the second case, we modeled the change in the TF activity after it is bound by an effector g, by 
introducing a binary variable τ்ி

  that had the value one when the TF was still functional after the 
binding event (τ்ி

 ൌ 1) and value zero otherwise (τ்ி
 ൌ 0). The values of this binary variable 

were determined through literature search and curation of the RegulonDB database. 



As an example consider lldR, a well-known TF that is activated by environmental signal L-
lactate. As with all STSs that we consider here, we assume that (i) the minimum value of the TF 
expression (in this case, ݕௗோ

 ൌ ௗோݕ
௪௧ ) is reached when the concentration of the environmental 

signal, L-lactate, is minimal (݊ି௧௧ ൌ ݊ି௧௧
 ൌ 0 M); (ii) the maximum level of the TF 

expression (ݕௗோ
௫) is related to the highest concentration of L-lactate (݊ି௧௧

௫ ൌ 10 mM), 
given a saturated TF concentration. Hence, we could estimate 
Δ݊ି௧௧

௫ ൌ ݊ି௧௧	
௫ െ	݊ି௧௧

 ൌ 10 mM and, ߯ௗோ
ି௧௧ ൌ 1. Suppl. File 5 contains 

values for Δ݊ா
௫, ்߯ி

ா , and τ்ி
  parameters for each TF-effector combination. 

From the 151 STSs, 53 of them were described by having a transcriptional auto-activation 
(்߯ி

ா ൌ 1), 16 showed an auto-repression (்߯ி
ா ൌ െ1), and 32 interactions did not show variation 

in the TF expression (்߯ி
ா ൌ 0). The remaining 50 interactions have not been conclusively 

investigated. Furthermore, 93 of the 151 interactions between TFs and effectors were reported to 
suppress (τ்ி

 ൌ 0; 36 instances) or induce (τ்ி
 ൌ 1; 57 instances) their regulatory activity. Fig. 

3B depicts the signal transduction associations with the different transcription factors (416 
transcriptional interactions between 183 interconnected TFs and 19 non-TF genes), and Supp. 
Fig. 9 summarizes the distribution of the signal transduction systems as a function of the effector 
strength (Δ݊ா

௫). 

STS association to environmental perturbations: To investigate the coverage of various 
environmental stimuli by the STSs, we calculated their occurrence frequency in the following 7 
environmental sources: 7 distinct acids (related to 7 STSs), 26 carbon sources (35 STSs), 11 
nitrogen sources (13 STSs), 19 metal sources (34 STSs), oxygen (5 STSs), 7 phosphorous sources 
(12 STSs), and 37 supplements such as amino acids or their precursors (45 STSs). 

  



4. Integration of signal transduction and transcriptional models 
4.1 Transcriptional model 
The mRNA dynamics of all genes in the compendium (vector ݕത) as a function of the TF 
concentration (vector ݕത்ி) is given by equation (3): 

  (3), 

where തܽ is a vector of the basal transcription coefficients, ധܾ is a matrix with elements ܾ that 

represent the effect of the jth TF to the ith gene, and ̿ߦ contains the degradation and dilution rate 
constants for each gene. The maximum (ݕത௫) and minimum (ݕത) values of gene expression 
for each gene were obtained from EcoMAC. The parameter ߶, which is only positive, alters the 
bounds for the expression for each individual gene. It allows for the removal of outliers (when 
0 ൏ ߶ ൏ 1) and also for imposing smaller/greater values than the ones in the compendium (when 
߶  1), i.e., several arrays will not be taken into account for some specific genes. Here, we set 
߶ ൌ 0.9 in which case the domain for each gene includes the values for more than 95% of the 
arrays in EcoMAC (Suppl. Fig. 10). In steady-state equation (3) becomes: 

yg      yTF

Cg
min  yg Cg

max
  (4), 

where ܥ ൌ ߶ିଵݕ and ܥ௫ ൌ  ௫ denote the min and max expression capacities. Weݕ߶
trained our model first with the 3,704 transcriptional interactions verified experimentally (i.e., the 
cases where	்ߚி

 ് 0). For that, we performed linear regression analysis to train equation (3) by 
using the gene expression profiles obtained from EcoMAC. Additionally, we constrained the 
linear regression problem by imposing positive (்ߚி

  0) or negative (்ߚி
 ൏ 0) regulatory 

coefficients to be consistent with the transcriptional activations or repressions that are confirmed 
in RegulonDB (566 regulations with confirmed interactions with 2 or more types of experimental 
validation; see Section 3.1). After training the model parameters, we compared the regulatory 
effect (activation, repression) inferred by our model for the interactions categorized in 
RegulonDB with strong but not confirmed evidence (2,517 candidates; see Section 3.1 for 
definitions) with a PCC more than 0.5 (367 interactions) and 0.7 (154 interactions) (Fig. 3C). To 
assess the predictive ability of our model, we calculated the precision-recall curves for both 
activation and repression. The area under the curve A was found to be significantly higher from 
the random model for those interactions with PCC > 0.50 (Aact = 0.650 and Arepr = 0.668; Suppl. 
Fig. 11A) and the predictive power of the model increases significantly for interactions with PCC 
> 0.70 (Aact = 0.743 and Arepr = 0.905; Suppl. Fig. 11A). Based on our analysis, activatory 
interactions are more difficult to predict than their inhibitory counterparts (Suppl. Fig. 11A), and 
the predictive power of the model increases proportionally with the correlation between the TF 
and target profiles, both for activations and repressions (Suppl. Fig. 11B).  

 Next, the set of equations in (3) was split into two subsets, based on whether the candidate gene 
is a TF (328 cases) or a non-TF  (3861 cases): 

d
dt

yg  ab  yTF   y

1  yg
min  yg   yg

max



  (5),   

 

 (6). 

To calibrate TF expression, the newly redefined constitutive transcription rate in (5) included a 
perturbative term (e) that fits only the TF expression profile for the defined optimal (WT) 

condition (yWT):    ewhere e  1  yTF
WT  . Hence, the error for the TF expression 

prediction in the WT condition will be zero. 

We also compared the distributions of regulatory (ߚ) and basal (ߙ) transcription coefficients 
between the two transcriptional models constructed (see equations (5) and (6)) by using only (i) 
experimental interactions, and (ii) both experimental and inferred regulations. For our purpose, 
we used Mann-Whitney tests (P < 10-39) to evaluate differences in the location, and Kolmogorov-
Smirnov tests (P < 10-34) to assess the difference in shape of the inferred parameter distributions 
between the two transcriptional models mentioned previously. Highly significant differences 
were found between the regulatory (Suppl. Fig. 12A) and basal (Suppl. Fig. 12B) coefficient 
distributions of models including purely experimental, or both experimental and inferred 
interactions.  Moreover, we sought activators and repressors inferred by our two models. For that, 
we defined a minimal regulatory capacity (ߚ௧) above which we categorized the interactions of 
TFs and their targets as activatory (ߚ  ߚ) ௧) or inhibitoryߚ ൏  ௧). Suppl. Figs. 12C and 12Dߚ
show the number of activations and repressions inferred in our models, respectively, as well as 
the number of regulations experimentally verified.  Interestingly, our results, when ߚ௧< 0.2, 
support the “Demand theory” (Savageau, 1998), which proposed a global ratio between 
repressions and activations of 0.5 (Suppl. Fig. 12E). 

4.2 Genetic and environmental perturbations.   
To predict gene expression under genetic (over-expression, gene knock-out, gene reshuffling, TF 
rewiring) and environmental (uptake of metabolic/chemical compounds) changes, we explicitly 
defined transcriptional and environmental constraints. Genetic perturbations of a set of genes, 
݃ ∈  : as followsݕ are modeled by modifying its gene expression ܩ

Over-expression gene: ݕ ൌ  ,௫  (7)ܥ

Gene knockout: ݕ ൌ  ,  (8)ܥ

Gene rewiring: ݕ ൌ ߙ  ߙ  ߚ∑ ி்ݕ  ி்ݕߚ∑
   (9), 

Gene reshuffling: ݕ ൌ ߙ  ி்ݕߚ∑
   (10) 

where index P denotes the promoter that drives gene g in the rewired/reshuffled circuit. 

Environmental perturbations in terms of changes in the intra-/extra-cellular metabolic fluxes (v) 
or in the concentrations of chemical compounds (IPTG, arabinose, etc.) are included as 
constraints in equation (2) (see Section 2.2). 

4.3 Selection of nominal parameters that control gene expression of E. coli. 
Model parameters can be categorized as local or global. Local parameters, such as the basal or 
regulatory coefficients for transcription, are optimized based on the procedures described in 
Section 4.1. We also have two global parameters: a parameter defining the boundary conditions 

yTF    yTF

CTF
min  yTF CTF

max

yg    yTF

Cg
min  yg Cg

max



of gene expression (߶) and a parameter that provides a fine-tuning of all signal transduction 
systems (Ω). As discussed in Section 4.1, we chose ߶ ൌ 0.9 so that the minimum and maximum 
values of the gene expression capacities are reduced by 5% which translates that 4.9% of the 
arrays were not considered to define gene expression variability (Suppl. Fig. 10). Hence, specific 
conditions of the compendium related with global cellular stresses were not considered, because 
they exhibited high variations in their expression profiles. Since our model is able to predict only 
small/local perturbations and not global perturbations (heat shocks, pH variations), we imposed 
boundary conditions lower than the values observed in the whole compendium. Similarly a value 
of 1 was chosen for Ω. From sensitivity analysis we performed, the predictive power of our 
model is largely insensitive – i.e., 2.30% (p > 0.048) of mean variation in the number of arrays 
well predicted –, up to high perturbations of these parameters (߶ ∈ ሺ0.9, 1.5ሻ and Ω ∈ ሺ0.5, 1.5ሻ) 
(Suppl. Fig. 13). 

4.4 Prediction of gene expression under perturbations: Expression Balance Analysis 
(EBA) 
4.4.1 Methodology description. 
We developed a novel method called “Expression Balance Analysis” (EBA) to predict the global 
gene expression of E. coli under genetic modifications and environmental changes. We have 
formulated an optimization problem to find the gene expression profile (ݕ) that accomplishes 
four sets of constraints (phenomenological, capacity, environmental, and genetic). Following an 
approach of minimizing the change to the WT state following a perturbation that is widely used 
in genome-scale modeling (Segre et al., 2002), we used a fitness function, E, that minimizes the 
gene expression errors of the 328 TFs (்ߝி): 

Minimize:   (11), 

subject to constraints imposed by the environment and the genomic modifications. In a matrix 

form, (11) is formulated as , where . Then we constructed a 

quadratic programming problem where the variables are a vector of 656 components containing 
the TF expression profiles and their corresponding model errors: 

Minimize:   (12), 

subject to:  (13), phenomenological constraints; 

 (14), capacity constraints; 

 (15), genetic constraints; 
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 (16), environmental constraints. 

The hessian matrix is , and ݂̅ ൌ 0ത.  The ீܨ  function represents all rules described in 

the equations (7-10). The function ܨா
ሺଵሻ represented in the equation 2 is used to impose the 

environmental restrictions in TF expression. The function ܨா
ሺଶሻ was represented in the equation 5 

by replacing ்ݕி by ்ݕி ∙ ்߬ி to simulate the environmental constraints also described in Section 
2 for non-TF genes. Then we use quadratic programming to solve EBA, and consequently, we 
obtain the expression profile of all TFs (்ݕி). After that, we use the equation 6 to compute the 
entire gene expression profile (i.e., non TFs). 

4.4.2 Performance of genetic and environmental predictions. 
To assess the predictive power of our transcriptional model, we used a testing set of arrays from 
EcoMAC with genetic modifications (gene knockouts, over-expressions and rewired TRNs; 437 
arrays total) and environmental perturbations (55 arrays; see Suppl. Fig. 1B). For each array, we 
computed the pearson correlation coefficient between the predicted (ݕത) and experimentally 
measured (ݕതୣ୶୮) expression profiles as PCC= ܲሺݕത,  തୣ୶୮ሻ). Hence, PCC quantifies theݕ
performance of our method to predict genetic/environmental perturbations of a given array.  Note 
that ݕത is predicted using EBA (Section 4.3). We compared the performance of our EBA model 
with respect to the following randomized models:  

1) Random selection of expression profiles from EcoMAC (ݕതாେ), with a performance 
given by ܲܥܥଵ ൌ തܲଵሺݕതாେ,  .തୣ୶୮ሻݕ

2) Wild-type expression profiles (ݕത) predicted by EBA without imposing any 
genetic/environmental constraints in equations (15-16), which results to a performance of 
ଶܥܥܲ ൌ തܲଶሺݕത,  തୣ୶୮ሻ for each profile. These profiles were generated by running EBAݕ
with different perturbation terms (i.e., different optimal conditions, yWT, selected from 
EcoMAC; see section 1.2), thus affecting the basal expression terms in equation (5).  

3) Expression profiles predicted by EBA by imposing random genetic and environmental 
constraints (equations 15-16) (ݕത୰ୟ୬ୢ),  ܲܥܥଷ ൌ തܲଷ൫ݕത୰ୟ୬ୢ,  തୣ୶୮൯ represent the predictiveݕ
power of the null-model. 

Next, we used two criteria to assess the predictive power of each array included in the testing set.  
First, we evaluated how close is the predictive power of EBA with respect to the predictive power 
distribution of a null-model.  For that, we computed the statistic Z-score: 

  (17), 

where i is one of the three null-models previously described.  Hence, we defined a ratio of well-
predicted arrays across the testing set as those where ܼ  3	ሺ ൏ 10ିଷሻ. Hence, to assign an 
array predicted by EBA (where PCC is its predictive performance) as a well-predicted condition 
by the first null-model (PCC1): 
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  (18). 

Analogously for the second and third null-model (i.e., EBA-guided random models): 

  (19), 

  (20). 

We analyzed the predictive power by computing PCC across the entire gene expression profile 
(global scores) or also selecting only a specific set of genes (local scores) (Suppl. Fig. 14A and 
14B). In the second case, we considered local genes, defined as those located with a distance of 
two links/hops from the specific gene perturbed in the array. Note that the TFs altered in an 
environmental perturbation are the set of genes affected directly by some environmental effector 
described in Section 2. 

To define an overall score to assess the EBA performance, we added a second criterion to 
characterize well-predicted arrays as those in which the PCC was higher than a threshold. Note 
that we used the average of all PCCs as threshold. Fig. 4A illustrates the overall scores as the 
ratio of well-predicted arrays that contained genetic and/or environmental perturbations. 

We also used another scoring function to evaluate the consistency of predictions in EBA.  To 
measure this, we computed the relative error between the predicted and experimental expression 
profiles (Suppl. Fig. 14C and 14D).  In addition, we tested EBA by training the transcriptional 
model with both experimental and inferred regulations. We evaluated EBA’s capacity to predict 
different types of genetic perturbations such as gene knockouts, over-expression and rewired 
TRNs (Suppl. Fig. 15). 

In addition, we studied the performance of EBA by training random sub-sets of transcriptional 
interactions or by excluding random sets of experimental and inferred interactions with different 
sizes (Suppl. Fig. 16A and 16B). We also performed a 5-fold cross-validation to investigate the 
robustness of EBA by using different training subsets of EcoMAC (Suppl. Fig. 16C and 16D). 
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5. Metabolic model 
5.1 Flux analysis 
Flux calculation: We used Flux Balance Analysis (FBA) (Orth et al, 2011) to predict the flux 
values so that the metabolic benefit (or biomass variation) is maximized. Mathematically, the 
problem is represented in the following way: 

Maximize    (21). 

subject to:   

The flux through all the reactions in the network was represented by the vector v; c is a vector of 
weights indicating how much each reaction contributes to the benefit. This model considers 324 
exchange reactions and the internal reactions are catalyzed by a set of 1,357 enzymes. 

Calculation of flux bounds:  We used the E. coli metabolic model iJO1336 (Orth et al, 2011) to 
perform flux variability analysis (FVA) (Mahadevan et al, 2003) to calculate the bounds on the 
reaction fluxes. This method uses constraint-based modeling to minimize the flux space (V) for 
the identification of minimal reaction sets. The mathematical formulation follows as: 

Maximize:    (20), 

subject to:   

where Bopt is the value of a supplied growth rate or metabolic benefit in optimal conditions, S is 
the stoichiometric matrix defined by 2,583 metabolic reactions and 1,805 metabolites, f is a 
vector containing the stoichiometric coefficients of growth-related reactions, and LB and UB are 
the metabolic flux bounds. This linear programming (LP) problem is computed for every 
metabolic flux in the model. We used fastFVA (Gudmundsson and Thiele, 2010), which is a 
Matlab implementation of FVA, to calculate Vmin and Vmax of all metabolic reactions. Note that 
we considered all flux solutions that achieved an optimal and suboptimal growth rate. Lower 
bounds on B were set to 50% optimal metabolic benefit (Bopt obtained in the WT condition) by 
using the FVA algorithm with the transcriptional constraints that were provided by the 
transcriptional model. 

5.2 Calculation of metabolic benefit under environmental perturbations 
In order to test the metabolic model under various environmental conditions, we simulated 100 
random environments where cells grew in minimal media and a growth-affecting parameter in 
abundance or limitation (carbon sources, nitrogen, supplemental amino acids, or metals). Suppl. 
File 6 contains a full description of the environmental sources used. In all cases, the environment 
contained O2, CO2, H2O, SO4, and PO4, with fluxes set at 5 gDW-1 h-1.  Suppl. Fig. 17 depicts the 
change in growth rate as a function of source availability. In all cases, the model provides a 
quantitative measure of the growth rate increase for the different environmental perturbations. 
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5.3 Calculation of metabolic benefit under genetic perturbations 
We explored the change in the growth rates in the case of genetic perturbations (knockout, over-
expression) for the following cases: (a) enzymes related to growth and (b) transcription factors 
that modulate expression of enzymes. For the later, we used both direct (i.e. enzyme is directly 
regulated by a TF) and indirect interactions between TFs and enzymes. For this analysis, we used 
the TRN based on experimental interactions. 

We created a novel method called Transcription-based Metabolic Flux Enrichment (TRAME) to 
integrate metabolic and transcriptional regulatory networks modifying the Vmin and Vmax 
calculated from FVA for each metabolic flux. This approach changes the values of the flux 
bounds by multiplying Vmin and Vmax by the probability that the enzymes are expressed (P-
function) as in the WT condition. This function integrates all enzymes catalyzing a specific 
metabolic reaction. 

More specifically, we define the P-function for a given metabolic reaction catalyzed by the 
enzyme e, as the scaled ratio between the predicted (ݕො) and wild-type (ݕ) enzyme expression: 

  (22), 

where ݊ ൌ 2 is a parameter that allows to factor in the variability observed on the wild-type 
arrays regarding the expression of that specific enzyme, ݕ. Hence, for those enzymes where 
the expression levels predicted are higher than the wild-type, the corresponding Pe function will 
be higher than zero, and consequently, the boundary conditions for the metabolic fluxes 
( ܲ	 ܸ, ܲ	 ܸ௫) will be higher. Note that for metabolic reactions in which several enzymes are 
governing, we will define a P-function generalized based on the logic activity of those enzymes. 
For instance, one specific metabolic reaction catalyzed by three enzymes A, B, and C that 
perform the following logic function:	ሺܣ	ࡾࡻ	ሺܤ	ࡰࡺ	ܥሻሻ); the P-function is defined as:  

  (23). 

Hence, OR vs AND logic gates are replaced by the average or minimum-functions respectively, 
and the assumption is that each enzyme acts independently and equally. This transformation 
provides new boundary conditions of all metabolic reactions for the equation 21, as follows: 

  (24). 

By using this representation, we can use these new upper and lower bounds in FBA to predict a 
growth rate after genetic perturbations. 

We used the model to predict phenotypic variations of the benefit function under genetic 
perturbations of growth-related enzymes and TFs. We used the random environmental conditions 
as in Section 5.2. For all environments tested, all exchange fluxes were set to Vmin = 0.1 gDW-1 h-

1 to increase the sensitivity of the model to small-scale effects throughout all reactions. As an 
approximation, for a metabolic reaction described by only one enzyme, A, we could simulate 
knockout and overexpressed enzymes by defining the P-function as follows: 
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1) PA = 0 represents that A is knockout enzyme and consequently, will impose its metabolic 
flux equal to zero. 

2) PA = 1 the enzyme is expressed to conduct the reaction in wild-type manner and 
consequently, the flux bounds are unaffected by the P-function. 

3) PA > 1 to represent that A is over-expressed enzyme for that reaction. 

As an example, if two enzymes (AND-logic), A and B, are catalyzing a given reaction and we 
want to simulate the over-expression of one of them (e.g., A), then the model assigns PA = 2 (i.e., 
twice its wild-type probability (PA = 1)).  Consequently, the P-function for that reaction is 
represented by ܲ	 ൌ ሺ݁݃ܽݎ݁ݒܽ	 ܲ ൌ 2, ܲ ൌ 1ሻ ൌ 1.5. Hence, our results indicate that a 
systematic knockout of each enzyme shows a gradient of intermediate growth rates. This is 
further confirmed by Suppl. Fig. 18, which shows the percentage of random environments that 
induced intermediate growth rates between zero and the optimal growth rate for that 
environment. Suppl. Fig. 19 depicts the predicted effect of TF knockouts (Suppl. Fig. 19A) and 
over-expressions (Suppl. Fig. 19B) to growth.  



6. Layer integration under a unifying model 
6.1 Integration of signal transduction, transcriptional and metabolic layers 
Our approach to developing an integrative genome-scale model of E. coli was to divide the total 
functionality of the cell into modules, model each independently of the others, and integrate these 
sub-models together. We defined four fundamental modules (Suppl. Fig. 20), and independently 
built, parameterized, and tested a sub-model of each. A key challenge of the project was to 
integrate those sub-models into a unified model. To address this, we computed the growth burden 
due to the production and maintenance of all proteins (cost), as well as the growth advantage due 
to the energy uptake of the metabolic pathways in each environment (benefit). 

In our cost-benefit model, the genetic cost is defined as the relative reduction in growth rate (ߤ) 
due to the production of essential proteins. We used the EBA method to predict gene expression 
profiles (ݕො) under environmental and genetic perturbations (see section 4). To measure the cost 
c, we computed the deviation between the WT (ݕ) and predicted (ݕො) gene expression profiles: 

  (25), 

where NG is the number of genes in E. coli genome. Similarly, to compute the metabolic benefit 
B, we used the metabolic sub-model described in Section 5 (equation 21). As such, the fitness 
function that represents the growth rate ̂ߤ is given by the difference between the benefit and the 
cost (10): 

  (26). 

Suppl. Fig. 20 summarizes the information flow among the four sub-models.  Environmental 
perturbations may modify gene expression through the signal transduction sub-model (see 
Section 3.2; equation 2), and may have an effect in the metabolic model by modifying directly 
the metabolic fluxes ( തܸ, തܸ௫) according to the change of effector concentration (Δത݊ா). 
Similarly, genetic perturbations alter the basal and regulatory coefficients (ߙത,  of the respective (ߚ̿
genes in the transcriptional model. 

6.2 Model Validation 
To test the utility of the integrative genome-scale model on phenotype predictions, we used a 
sub-set of data (295 arrays) from EcoMAC in which the growth rate is well characterized (i.e., 
EcoPhe; Section 1.4). We analyzed how growth rate correlates with the fitness function (equation 
26) computing the PCC between the measured and predicted growth rates. Hence, we applied the 
integrated genome-scale model to predict the cost and benefit functions, and consequently, the 
growth rate by applying the equation 26. Then we explored the testing subset of arrays that 
includes the maximum number of arrays and maximized ܲܥܥ. Interestingly, the growth rate of 
164 arrays (from a total of 295 arrays) was predicted with high accuracy (ܲܥܥ ൌ  ,0.86 ൏
10ିଵ, Suppl. Fig. 21A; right bar). To assess the predictive power of our integrated model, we 
generated a null-model to predict growth rates. As expected, sets of arrays with similar sizes to 
the previous mentioned only could achieve an accuracy of ܲܥܥ ൏ 0.1. Subsequently, we also 
analyzed how growth rate correlates with the benefit and cost functions independently. As shown 
in Suppl. Fig. 21A (middle and left bars), the predicted growth was in less agreement with the 
experimental value in both cases (ܲܥܥ   ,0.75 ൏ 10ିଵ; and ܲܥܥ   ,0.06 ൏ 0.82; 
respectively) when compared to the fitness function of equation 26, which takes both these values 
into account. 
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Then we applied the whole integrated genome-scale model to predict the cost and benefit 
functions. To predict gene expression, we used EBA with the TRN containing only 
transcriptional interactions verified experimentally. We only found 44 arrays with a maximal 
correlation, PCCൌ ) 0.53 ൌ 0.0004), between ߤ and ̂ߤ (Suppl. Fig. 21B; right bar). 
Interestingly, when we added to that set the inferred interactions, growth in 81 arrays was 
predicted accurately with PCCൌ ) 0.85 ൏ 10ିଵ) (Suppl. Fig. 21C; right bar). 

We also studied the phenotype predictive power by focusing on different groups (Suppl. Fig. 22) 
of conditions in which: (i) the observed growth rate was high or low; (ii) the perturbations was 
related to environmental changes or genomic modifications; and, (iii) the genetic changes were 
gene knockouts or transcriptional rewirings. 

  



7. Model optimization through targeted experimentation 
7.1 Analysis of affected GO terms in EcoMAC  
We explored the landscape of biological processes that could be affected by implementing all 
genetic perturbations contained in the training set (EcoMAC).  For that, we used the genome 
ontology (GO) of EcoCyc to obtain 1,361 GO terms associated to biological processes of E. coli.  
For our purposes, we only considered GO terms related to non-specific processes. According to 
the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.7), we only 
included GO terms belonged to the first five levels (686 GOs). We only identified the 80% (3,319 
genes) of the E. coli genes related to at least one GO (Suppl. Fig. 23A and 23B). We then studied 
the biological processes affected, according to GO and the genetic perturbations present in 
EcoMAC.  For a GO process g to be affected, one of the following should happen: (a) a certain 
number of genes (ߢ) of that GO process g have been perturbed and/or (b) a certain percentage ߰ 
of all the genes ܰ

ீை	that comprise the GO process g has been perturbed: 

  (27), 

where Φୋ is the number of genes of the GO process g that are perturbed in the dataset; ܰ
ୋ is 

the number of genes included in GOሺ݃ሻ; ߢ is a number of genes; and ߰ is the percentage of ܰ
ୋ 

above which we defined that the GO process is explored. Here, we set ߢ ൌ 3 and ߰ ൌ 10%. 
After testing the alteration of all GOs, we observed that only 23% (160) of all GO terms were 
perturbed by EcoMAC. 

7.2 Model optimization through targeted experimentation 
The integration of new experiments in the training set could improve significantly the predictive 
power of the E. coli simulator. However, selecting which experiments to perform so that the gain 
to the model predictive power is maximized is not a trivial task. Towards this goal, we here 
propose to find the set minimal set of genes that (a) maximizes the coverage of GO terms and (b) 
maximizes the gene expression variability that is expected in the respective arrays. For the first 
condition, we implemented a greedy algorithm to explore minimal sets of gene candidates to be 
perturbed subject to alter the maximum number of GO terms (S2) non-altered by EcoMAC (77% 
of GO terms).  Hence, optimal gene sets should minimize the scoring function: 

  (28), 

where ଵܵis the number of genes of the proposed set, ܵଶ is the number of GO terms non-altered by 
the proposed gene set according the equation 27, and ߣ is the weighting factor.  Different sets of 
genes were computed by running random initializations of the greedy algorithm (Suppl. Fig. 23C 
– 23D). 

Next, we explored the gene expression diversity of genetic/environmental perturbations by using 
the EBA method. First, we simulated all possible single gene knockouts of E. coli to characterize 
gene expression variability ( ܸ) provided by those genetic perturbations. For that, we used EBA 
to predict the gene expression profile when single knockouts are implemented (ݕത), and then we 
calculated the relative difference between the perturbed and wild-type (ݕത) expression profiles 
in wild-type conditions (LB with 0.3% glucose]) given by ݁ ൌ 〈ሺݕത െ തሻݕ ⁄തݕ 〉. Here, we 
categorized a gene knockout as a genetic perturbation that can provide high gene expression 
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Next, we calculated the gene expression diversity in other-than-WT environments for all gene 
knockouts. To do that, we first predicted the gene expression profiles under different 
environmental perturbations, by simulating the gene expression (ݕതୣ୬୴) of E. coli under 60 
environments (see Suppl. File 7). Those environments were characterized by growing cells in LB 
media with 0.3% glucose and with the addition of high concentration of single carbon, nitrogen, 
oxygen, phosphate, or metal sources. We then computed the gene expression difference for each 
gene, g, between the wild-type condition and the 60 predicted environmental perturbations, as 
݁ୣ୬୴ ൌ หݕୣ୬୴ െ  ห. Analogously, we categorized all genes as potential candidates to provideݕ

high gene expression variability if max	ቊ
ఎି〈ఎഥ〉

ఙആഥ
,
ణି〈ణഥ〉

ఙഛഥ
ቋ  3, where ߟ and ߴ represent the 

mean and standard deviation of ݁ୣ୬୴ for a specific gene across the different environments 
respectively. 

 

Finally, we used the criteria of maximum gene expression diversity under genetic/environmental 
perturbations to select the top candidates ranked to maximize the coverage of biological functions 
to be perturbed. This methodology has a profound effect on the number of GO terms covered and 
the gene expression diversity observed. As an example, by including the top 36 genetic 
perturbations identified by using this method, an additional 77 or 14.6% of the non-affected GO 
terms were perturbed (i.e., the number of GO terms affected after the addition of those 
perturbations was 1.48-fold higher). Note that those genes were selected to maximize gene 
expression variability under environmental perturbations (see Suppl. File 7) or implementing all 
gene knockouts (3-fold standard deviation higher than the average in the E. coli genome). 
Interestingly, if genes are picked randomly, only the 3.31.1% of non-affected GO terms were 
perturbed (Suppl. File 8 contains the GO terms altered by the added gene set). 

7.3 Experimental measurements 
Growth rates of 10 single-gene knockouts along with wild type E. coli MG1655 were predicted 
and then validated experimentally. Knockouts were chosen to ensure that they are responsive to 
predefined external environments. These knockouts strains were taken from Keio collection 
(Baba et al., 2006). 

For routine culturing, cells were grown in LB medium. Knockouts were grown always in media 
supplemented with 50 µg/ml kanamycin unless otherwise mentioned, while wild type in media 
without any antibiotic. All growth experiments were done at 370C in M9 medium. For growth 
profile measurements, cells from fresh colonies were grown in 3 ml LB for 8 h, then were washed 
twice with glucose omitted M9 medium (Sambrook et al., 2001) to remove any trace of LB, and 
further dissolved in glucose omitted M9 medium. OD600 was measured, and depending on OD600, 
2 to 4 µl of cells were transferred in M9 medium to a final volume of 200 µl resulting in OD600 

close to 0.01. Cell growth profiles were measured and recorded using Tecan infinite 200Pro 
microplate reader at every 10 minutes. When required, cell growth profiles were measured in M9 
medium supplemented with following chemicals: D-glucose (0.3%), L-methionine (100 µg/ml), 
L-arginine (0.2%), L-cysteine (0.1 µM), cobalt chloride (1 µM), L-rhamnose monohydrate (1%), 



D-ribose (0.2%), D-galactose (0.6%), and ferrous sulphate heptahydrate (5 mg/l). Concentrations 
of supplements were chosen to ensure that they were not toxic to cells. 

These 10 single-gene knockout E. coli strains were selected from Keio collection where it was 
possible to record the effect of variations in external environment in form of growth rates (Fig. 
5C, Suppl. Fig. 24). Strains with following gene deletions were used for growth rate 
measurements:  

metN: MetN is an ATPase component of DL-methionine uptake system, which regulates import 
of L-methionine (Merlin et al., 2002). To see the effect of metN deletion on growth rate, growth 
rates were measured in M9 medium with or without L-methionine. Growth rate of MG1655 on L-
methionine supplemented M9 medium was the highest. Growth rates of ΔmetN strain on M9 
medium with or without L-methionine were similar, and were comparable to MG1655 grown on 
only M9 medium. These results indicate that inherent methionine biosynthesis of E. coli is not 
well sufficient to take care of methionine requirement, and MetN is solely responsible for the 
transport of L-methionine.  

metL: metL encodes aspartate kinase II / homoserine dehydrogenase, a bifunctional enzyme that 
catalyzes biosynthesis of several amino acids including methionine (Theze et al., 1974). metL 
knockouts are inefficient in methionine biosynthesis, hence metL knockouts are expected to 
demonstrate retarded growth on media lacking methionine, which we observe in our growth 
experiments.  

astE: astE encodes arginine succinyltransferase (AST), an enzyme involve in AST pathway of 
arginine degradation. AST pathway gets activated in nitrogen-limited environment. It has been 
reported that in media where arginine is sole source of nitrogen, E. coli with defects in AST 
pathway grows slower in the absence of arginine (Schneider et al., 1998). Our growth 
measurements also satisfy these facts.  

cysH: cysH encodes PAPS reductase, which indirectly regulates cysteine synthesis. ΔcysH strain 
is not able to make cysteine (Krone et al., 1990). Our experiments demonstrated that ΔcysH strain 
grown on L-cysteine lacking M9 medium have slower growth rate than grown on L-cysteine 
supplemented M9 medium.  

cysG: cysG encodes an enzyme catalyzing transformation of uroporphyrinogen III into siroheme, 
which indirectly governs cysteine synthesis. ΔcysG strain is unable to grow on cysteine lacking 
media, which was also observed in our experiments (Warren et al., 1990).  

rhaT: rhaT encodes RhaT transport system that transports L- Rhamnose in E. coli. ΔrhaT strain is 
unable to transport L-rhamnose inside cell (Tate et al., 1992), and use this as carbon source. In 
our experiments, ΔrhaT strain grew faster on M9 medium supplemented with D-glucose than 
supplemented with L-rhamnose.  

rbsK: rbsK encodes ribokinase, which catalyzes the phosphorylation of ribose to ribose 5-
phosphate (Hope et al., 1986). It has been reported that rbsK mutants are unable to grow on 
media containing D- ribose as a sole source of carbon (Anderson and Cooper, 1969). In our 
experiments, ΔrbsK strain demonstrated much retarded growth on M9 medium containing D-
ribose as sole source of carbon. 



galK: galK encodes galactokinase, an enzyme involve in galactose metabolism, catalyzing 
phosphorylation of galactose to galactose 1-phosphate. Thus ΔgalK mutants are unable to 
metabolize galactose (Kalckar et al., 1959). In our experiments, ΔgalK mutants demonstrated 
significantly retarded growth on M9-medium containing D-galactose as sole source of carbon.  

dgoA: dgoA encodes 2-oxo-3-deoxygalactonate 6-phosphate aldolase, which catalyzes 
degradation of D-galactonate, a product of D-galactose catabolism. Final catabolic products of D-
galactonate enter in central metabolism (Cooper, 1978). In performed experiments, ΔdgoA strain 
demonstrated slower growth rate on M9 medium containing D-galactose as sole source of carbon, 
because due to dgoA deletion one of several pathways of D-galactose degradation was blocked, 
leading to less degradation of D-galactose  

mntH: mntH encodes a divalent metal ion transporter, which transports Mg2+, and Fe2+ (Makui et 
al., 2000). In our experiments, MG1655 and ΔmntH strains demonstrated faster growth rates on 
FeSO4 supplemented M9 medium, compared to medium lacking FeSO4. 

Note that all genes selected are metabolic enzymes and they were found in iJO1366 metabolic 
model. Consequently, those gene knockouts did not induce apparent effects in the gene 
expression profiles predicted by EBA under WT media. However, gene expression patterns of 
those knockout strains simulated in supplemental media showed significant variations with 
respect to the WT, because of media supplements introduced changes in gene expression directly 
in some TFs (creB, uhpA, meJ, argP, metR, nikR, rcnR, rhaR, rhaS, rbsR, rpiR, galR, galS, glpR, 
gatR_1, iscR, and nsrR) through the signal transduction sub-model. 

OD595 nm as a measure of the cell growth was represented on a logarithmic scale to highlight 
strictly exponential growth phase, which was selected for calculation of growth rate by using 3 
replicates. 

7.4 Comparison between experimental and predicted cell growth values 
We applied our integrated model to predict the growth rate of 28 different phenotypes. 
Specifically, we predicted both WT and the 10 single-knockout strains in (a) M9 salt medium 
supplemented with 0.3% glucose (10+1 strains) and (b) in the previous medium (M9 and 0.3% 
glucose) with the addition of a single compensating chemical as described in section 7.3. 

To simulate the growth rate for the previous 28 phenotypes, we ran the integrated genome-scale 
model as follows: (i) modification of the equations (15-16) from the EBA to predict the gene 
expression profiles under the gene knockouts and environments defined by the addition of carbon 
sources and the eight chemicals used; (ii) we applied TRAME to compute the metabolic flux 
bounds according to the genetic and environmental perturbations; and then, (iii) we computed the 
benefit and cost (see Section 6) to predict the growth rate. 

Having considered these above-described model predictions for the WT E. coli strain and 29 
mutants, we measured the growth rates for the phenotypes mentioned previously (Suppl. Fig. 
24). Interestingly, the model accounts for previously observed gene essentiality with 79% 
accuracy (p < 10-4; Fig. 5D) across the 28 phenotypes experimentally explored. The model 
predictions showed discrepancies with measured growth rates (̂ߤ) non-significant (p > 10-3; 
ߤ̂ ∈ ߤൣ െ ,ఓߪ3 ߤ   ఓ൧) in less than 43% of the phenotypes with a low growth rate measured (28ߪ3
measurements). Interestingly, the model predictions showed discrepancies with measured growth 
rates non-significant in less than 75% and 58% of the phenotypes related to genetic perturbations 
(20 measurements) and gene knockouts (10 measurements) respectively. Only the 53% of 



phenotypes (17 measurements), in which environmental perturbations play a role, were predicted 
with statistical significance (Fig. 5D). 

We also examined the gene expression profiles predicted by EBA for these 30 phenotypes. A 
total of 149 genes were significantly altered (p < 10-3) in those conditions (Suppl. File 8).  Next, 
we performed a functional enrichment of those genes and different GO terms related were 
identified as pathways potentially altered (p < 10-3) in the signal transduction systems and TRN 
(e.g., response to external stimulus), or metabolism (e.g., primary metabolic process, 
carbohydrate and amino acid metabolic and catabolic process) of E. coli. 
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