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Supplementary Material

1. Comparison of MinSpan and Convex Optimization Methods on a
Simplified Model and the E. coli core Model

A toy model is presented in the main text Figure 1 and Figure S1A. The model consists of
fourteen metabolites (m = 14) and 18 biochemical reactions (n = 18). This results in a
stoichiometric matrix that is (14 x 18) in size and has a null space with dimension of 4. Thus,
there are four MinSpan pathway vectors that span the space (Figure S1B). On the other hand,
utilizing convex optimization methods, (Extreme Pathways (ExPas) (X3 software) and
Elementary Flux Modes (EFMs) (Metatool 5.1)) we find 8 total pathways for each method
though not all 8 pathways are the same (Figure S1C and S1D).

Next, we highlight the MinSpan pathways and ExPas of the metabolic model for E. coli core
metabolism (Orth et al., 2009) in Figure S2 to further aid biological conceptualization of the
MinSpan pathways, as well as contrast them with previous convex optimization methods. The E.
coli core model is comprised of: Glycolysis, Pentose Phosphate Pathway, Citric Acid Cycle
(TCA), Glyoxylate Cycle, Anapleurotic Reactions, Fermentation reactions, and a simplified
Nitrogen Metabolism for Glutamine/Glutamate. The network is comprised of 72 metabolites and
95 metabolic reactions. Under minimal glucose aerobic conditions, the null space of the
stoichiometric matrix has 23 dimensions, resulting in 23 MinSpan pathways (Figure S2A). The
MinSpan pathways are hierarchically clustered by reaction usage and fall into broad categories
including: glycolysis, anaplerotic pathways, fermentation, different uses of TCA, and pentose
phosphate pathway. There are multiple glycolysis pathways representing multiple ways to mass-
balance co-factor usage. In addition, one of the dimensions is a Type III loop which is a
thermodynamically infeasible steady-state pathway. More information about Type III loops can
be found here (Palsson, 2006). The MinSpan pathways utilize an average of 20.8 reactions per
pathway.

Next we calculated the ExPas for this core model as the network is still small enough for convex
analysis. The ExPas are also hierarchically clustered, but into 50 groups as there are 16690
pathways (Figure S2B). The group size and average reaction usages are also shown. The colors
highlighting MinSpan pathways in Figure S2A are used in Figure S2B to show where the
MinSpan pathways fall into the ExPa clustering groups. The entire bottom half of the ExPa
clusters utilize the Pentose Phosphate Pathway thus only one MinSpan pathway (highlighted in
yellow) falls into that broad category. All ExPa’s can be reproduced by combinations of
MinSpan pathways as the MinSpan is a linear basis for the null space.

In these two small examples, we see that there are many more ExPas/EFMs as MinSpan
pathways. As model size increases, the number of calculated MinSpan pathways is always the
dimension of the null space which scales linearly with the size of the stoichiometric matrix.
Extreme pathways and elementary flux modes enumerate all pathways which scale exponentially
with model size. It has been estimated that an older E. coli model (iJR904) has 10'® extreme
pathways and the human network (Recon 1) has 10*° extreme pathways (Yeung, 2007). Thus, it
is computationally intractable to calculate ExPas and EFMs for any genome-scale network and
convex optimization is only applicable to small networks, such as the E. coli core metabolic



network. However, the MinSpan approach can be completed for larger models as demonstrated
in the main text for the current S. cerevisiae and E. coli models.

2. Protein-Protein Interactions Are Conserved in Metabolic Pathways

One of the metrics utilized to determine biological relevance of MinSpan pathways is the
conservation of yeast two-hybrid (Y2H) protein interactions. There are very few Y2H protein
interactions in yeast metabolism and to our knowledge there has not been a comprehensive
assessment of whether or not Y2H interactions are conserved within metabolic pathways.

There are 48 known pairs of proteins that have Y2H protein interactions in yeast metabolism, as
defined by the scope of iMM904. We first determined how many of the protein interaction pairs
were in metabolic pathways as defined by the four pathway types discussed in the main text:
KEGG Modules (4 pairs), YeastCyc (25 pairs), Gene Ontology (47 pairs), and MinSpan (37
pairs) (Figure S3, red lines). 22 Y2H protein interaction pairs were consistently present in
YeastCyc, Gene Ontology, and MinSpan pathways. Examples of protein interaction pairs that
appeared in YeastCyc, Gene Ontology, and MinSpan include: 1) YPR069C and YLR146C which
catalyze the adjacent metabolic reactions spermidine and spermine synthase in polyamine
biosynthesis (http://pathway.yeastgenome.org/ YEAST/NEW-
IMAGE?type=PATHWAY &object=POLYAMSYN-YEAST-PWY), 2) YNROI2ZW and
YHRI128W which catalyze the adjacent metabolic reactions uracil phosphoribosyltransferase and
uridine kinase in pyrimidine ribonucleotide salvage pathways
(http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?type=PATHWAY &object=YEAST-
RNT-SALYV), and 3) YERO90W and YKL211C which catalyze anthranilate synthase and indole-
3-glycerol phosphate synthase in tryptophan biosynthesis
(http://pathway.yeastegenome.org/YEAST/NEW-IMAGE?type=PATHWAY &object=TRPSYN-
PWY).

To determine whether protein interactions pairs are enriched, we generated 10,000 lists of 48
random protein pairs from the metabolic proteins in iMM904. For each random list, we
determined the number of random protein interaction pairs that were in metabolic pathways
(Figure S3, blue histograms). We found that the real Y2H pairs were highly enriched in all
metabolic pathways (for all four pathway types, p < le-4, empirical test) lending support to the
notion that Y2H protein interactions are in fact conserved in metabolic pathways. The factor of
enrichment, as compared to the median of the 10,000 random lists, was: 3.36x for MinSpan, N/A
for KEGG (median of random lists = 0), 25x for YeastCyc, and 1.68x for Gene Ontology.

3. Correlation analysis results

The values for coverage (number of interactions, x-axis) and accuracy (y-axis) of Figure 2 of the
main text are shown in Table S2. The p-values for the differences in ROC curves is presented in
Table S3. The receiver operating characteristic (ROC) and precision-recall (PR) curves are
shown in Figure S4. It is important to note that PR curves are primarily used for comparing
information retrieval algorithms, which ignore true negative results. In this study, we are looking
for how representative a metabolic pathway is to its underlying biomolecular interactions, not at
how well interactions can be retrieved. Thus, true negative results are of equal importance as true



positives. As such, the ROC curve is a better measure than the PR curve. We have nonetheless
included the PR curves to illustrate that the best ROC curve is often the best PR curve as well.

Calculation of these values is described in the Materials and Methods. For all three biomolecular
interaction types, MinSpan is the most representative by varying degrees. MinSpan has more
coverage than traditional pathway databases (KEGG, YeastCyc, and EcoCyc). Gene Ontology
has more coverage than MinSpan due to the Biological Processes ontology of Gene Ontology
having a larger scope than just metabolic pathways. Still, MinSpan is more representative. By
definition, RandSpan and MaxSpan are less sparse linear bases for the null space of the two
metabolic models than MinSpan. With a less sparse matrix, the chance of a significant pairwise
correlation between two genes or two proteins is expected to increase. This should lead to a more
total coverage but a lower accuracy, which is seen in the results.

As the different pathway databases and MinSpan cover different portions of metabolism, the
total number of possible pair-wise interactions to be calculated differs. This means that a direct
comparison cannot be made. Further, the intersection of all pathway databases is so few
interactions, that a comparison for that region is not characteristic of all of metabolism. Instead,
we tested each pathway database for the interactions in a particular database, as well as the union
of all interactions. When there was a missing interaction, a correlation of 0 was used. Albeit an
artificial introduction which skews results, this is the only way to do comparisons across the
same subset. The artificial introduction typically decreases the ROC AUC, but actually increases
the ROC AUC for positive genetic interactions as there are very few actual positive genetic
interactions between metabolic genes.

In general, MinSpan was more representative of the biomolecular interactions. Across the 30
tested subsets of differing number of interactions, MinSpan was statistically more representative
in 15 cases and was statistically less representative in only one case (intermediate transcriptional
regulation for the EcoCyc subset). The ROC and PR curves for all cases and the ROC AUC
values with p-values is presented in Tables S4-S13 and Figures S6-9.

4. Criteria and full results for predicting transcriptional regulation under
51 environmental shifts

To determine the accuracy of transcriptional regulation predictions by constraint-based models
and MinSpan, we collected the known regulatory interactions from EcoCyc and literature (see
Table S14). As described in the Material and Methods, prediction of a transcription factor’s
involvement in a nutrient shift was determined by hypergeometric enrichment (p < 0.05) of the
transcription factor in the significantly changed MinSpan coefficients for that shift. For the
aerobic/anaerobic shift, we completed a more extensive curation of the literature to determine the
transcription factors involved in the environmental shift. The rationale and list of papers for the
anaerobic shift are presented in the next section.

For a particular shift, the significant enrichments were compared to the available knowledge (e.g.
EcoCyc and literature) to determine the True Positive (TP) and False Negative (FN) predictions.
Specificity of the MinSpan prediction was determined by testing for enrichment based on a



binomial distribution (p < 0.05) of the TPs and FNs. Sensitivity was determined based on the
Miss Rate ( = FN/(TP+FN)). High specificity and sensitivity was deemed a correct prediction (37
total). High specificity but low sensitivity was deemed a marginal prediction (8 total). Low
specificity, regardless of sensitivity was deemed a bad prediction (6 total).

A list of the MinSpan predictions, known EcoCyc and literature TF interactions, and their
comparison is provided in Supplementary File (tfShiftResults.xIsx).

5. 28 transcription factors are associated with the anaerobic shift

28 transcription factors were determined to be associated with the anaerobic/aerobic shift. All
known electron donors and acceptors, terminal reductases and oxidases, and respiratory
dehydrogenases were identified for E. coli’s respiratory chain in the literature (Unden and
Dunnwald, 2008). TFs that either sensed the electron donor and acceptors or were strong
regulators of the reductases, oxidases, and dehydrogenases comprised 25 of the 28 TFs included
in our list (ArcA (Compan and Touati, 1994), Cra (Ramseier et al., 1995), CysB (Hryniewicz and
Kredich, 1994), DcuR (Salmon et al., 2003), FhlA (Schlensog and Bock, 1990), Fnr (Unden and
Trageser, 1991), Fur (D'Autreaux et al., 2002), GlpR (Yang et al., 1997), GntR (Izu et al., 1997),
HycA (Sauter et al., 1992), IscR (Schwartz et al., 2001), KdgR (Murray and Conway, 2005),
LIdR (Aguilera et al., 2008), MarA (Martin et al., 2002), ModE (McNicholas and Gunsalus,
2002), NadR (Kurnasov et al., 2002), NarL (Gunsalus et al., 1989), NarP (Gunsalus et al., 1989),
NsrR (Bodenmiller and Spiro, 2006), NtrC (Sasse-Dwight and Gralla, 1988), OxyR (Zheng et
al., 1998), PdhR (Quail and Guest, 1995), PhoP (Kasahara et al., 1992), SoxS (Demple, 1996),
and TorR (Simon et al., 1994)). Three other TFs were also included based on EcoCyc annotation
(Keseler et al., 2011) (AdiY, AppY, and HyfR).

6. In depth analysis of predicted transcriptional regulatory changes of
well-studied nutrient shifts

Of the 51 shifts, five well studied shifts were examined in closer detail. These shifts include
amino acid stimulation by arginine, leucine, and tryptophan (Cho et al., 2012), adenine
stimulation (Cho et al., 2011), and the anaerobic/aerobic shift. Arginine stimulation resulted in
four significantly changed pathways (Figure S10A). Two of the pathways are involved in
biosynthesis of L-arginine from L-glutamate and ammonia. Both of these MinSpan pathways are
regulated by ArgR. Two TFs (ArgR and GadW) are highly enriched in the four pathways (p <
0.05, hypergeometric test). Leucine stimulation resulted in two changed pathways associated
with two enriched TFs: LeuO and Lrp (Figure S10B). The two pathways represent the
biosynthetic pathway of L-leucine from pyruvate. Tryptophan supplementation significantly
changed four pathways associated with three enriched TFs: TyrR, TrpR, and Cra (Figure S10C).
The four pathways combine to form the biosynthetic pathway of L-tryptophan from erythrose-4-
phosphate. TyrR regulates two of the pathways while TrpR regulates the final pathway in the
biosynthetic pathway. Cra regulates two of the pathways implying a role in the L-tryptophan
shift, but the transcription factor has not been associated with the nutrient shift in the literature.
Adenine stimulation changed five pathways associated with the enriched TFs of PurR and Nac
(Figure S10D). Nac has not been previously associated with adenine stimulation. The oxygen
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shift is global and affects 70 MinSpan pathways that are associated with 54 of the 154 model
related TFs. Of the 54 TFs, 12 are enriched in the 70 pathways (Figure S10E). To check the
accuracy of in silico predictions, we used primary literature and gene ontology to determine 28
TFs that are well associated with the shift between aerobic and anaerobic growth referred to here
as the oxygen shift (Supplementary Section 5). Twenty of the 28 TFs in the oxygen shift are
among those associated with the significantly changed pathways (p = 3.5e-6, hypergeometric
test) and 9 of the 12 were in the enriched group (p = 3.6e-6, hypergeometric test). MntR, AtoC,
and SgrR are not associated with the shift, though MntR’s regulation of mntH is co-regulated by
Fur (Ikeda et al., 2005).

7. Analysis on the conservation of metabolic pathway structure across E.
coli and S. cerevisiae

A characteristic of human-defined pathways is that they are often universal and conserved across
multiple organisms, providing a common “language” for studying biochemistry. Though a
common “language” can be advantageous, it can also be a weakness as distant organisms can be
quite different, and the operation of metabolic pathways might be incorrectly represented.

As a preliminary analysis, we assessed the conservation of MinSpan pathways across the S.
cerevisiae (Mo et al., 2009) and E. coli (Orth et al., 2011) models. The biochemistry of E. coli is
better defined in literature and is recapitulated in the metabolic models. Thus, the E. coli model
is much more complete than the S. cerevisiae model.

The S. cerevisiae null space is 332 dimensional, resulting in 332 pathways (Figure S11A). The E.
coli metabolic model is more complete with a larger stoichiometric matrix and thus a higher
dimensional null space with 750 MinSpan pathways (Figure S11B). The S. cerevisiae MinSpan
matrix has 7455 non-zero entries in the matrix resulting in 2.26% of all entries in the matrix
being non-zero. The E. coli MinSpan matrix is sparser with only 0.97% of entries being non-zero
(15794 entries).

Even though the sizes of the matrices are quite different in both number of pathways and
reactions, the global characteristics of the pathways are very similar. The majority of the
MinSpan pathways contain around 20 reactions. The reaction usage, or the number of times that
a reaction shows up across the pathways, also has a very similar distribution. Most reactions are
typically used only once, with only a few reactions being used in a large number of MinSpan
pathways.

Outside of the mathematical structure, we also assessed how similar the pathways were across
the two organisms based on conservation of gene products. Though E. coli and S. cerevisiae have
quite different metabolisms, they maintain a similar genetic core. An earlier assessment of the
similarity in metabolic enzymes revealed that there are 271 common enzymes involving roughly
400 gene products (Jardine et al., 2002), representing less than half of the number of gene
products contained each metabolic model. On the same order of similar enzymes, we found 272
gene-associated metabolic reactions that were conserved in E. coli and S. cerevisiae by matching
the substrate to product conversions in the metabolic model.



We filtered the MinSpan pathways to only the 272 matching reactions and determined the
similarity between the pathways for the two organisms based on a K-nearest neighbor search
using the Pearson correlation as the distance metric. We found that MinSpan pathways were well
conserved across E. coli and S. cerevisiae as compared to the RandSpan pathways (345%
difference in correlation medians, p = 3.91e-220, Kolmogorov-Smirnov test) and random
matrices with similar distributions of non-zero entries (83% difference in correlation medians, p
= 2.31e-101, Kolmogorov-Smirnov test) (Figure S11C). The median Pearson correlation for the
MinSpan pathways was 0.636.

Next, we compared the MinSpan conservation to human-defined pathways (Figure S11C).
KEGG was excluded from this analysis as KEGG is pathways are universal and are not
organism-specific. BioCyc (EcoCyc vs YeastCyc) and Gene Ontology were marginally, but
significantly better conserved than MinSpan pathways (28% and 20% difference in correlation
medians, p = 1.07e-7 and p = 3.74e-6 respectively, Kolmogorov-Smirnov test) but there was not
a statistical difference between BioCyc and Gene Ontology conservation of metabolic pathways
(7% difference in correlation medians, p = 0.213, Kolmogorov-Smirnov test). The median
Pearson correlations for BioCyc and Gene Ontology were 0.815 and 0.761, respectively. Thus,
MinSpan pathways are conserved compared to random matrices and pathways, but not to the
degree of human-defined pathways.

The difference in conservation can be attributed to how the pathway types are built. Human-
defined pathways are based on the topology of gene products in reaction networks. MinSpan
pathways are constructed based on both the topology of the network and the function of
metabolite flow. The presence or absence of gene products across multiple organisms does not
necessitate that they operate together in a similar fashion. For example, Amador-Noquez et al.
show that complementing genome annotation with isotope tracer studies is critical for
determining how the TCA cycle operates differently in Clostridium acetobutylicum (Amador-
Noquez et al., 2011), in comparison to the canonical use of the TCA cycle.

As noted in the main text, these results are preliminary as the comparison is of only two
organisms that have quite differing metabolisms (Jardine et al., 2002). Further research is needed
with dozens of metabolic reconstruction, both close and distant in the phylogenetic tree, to fully
assess the conservation of MinSpan pathways.

8. Method for calculating alternate optima MinSpan and assessment of
differences

Coleman and Pothen proved that a greedy algorithm, such as the MinSpan algorithm, yields a
globally optimal sparse null space. The number of non-zero entries in a MinSpan pathway matrix
is optimal and unique. However, the MinSpan algorithm is a MILP problem, and like other LP
and MILP problems used in constraint-based modeling (e.g. FBA), alternate optimal solutions
might exist. Thus, other alternate MinSpan pathway matrices may exist that have the same
number of non-zero entries but with slightly different pathways.



To determine the differences between different alternate matrices, we formulated an algorithm
that takes a completed MinSpan pathway matrix as an input and enumerates alternate optimal
vectors for each pathway vector. For each pathway vector, the algorithm removes the one
pathway, and then exhaustively determines different pathways with the same reaction number
that still span that subspace. Thus, the output of the algorithm is a list of vectors for each column
of the original, calculated MinSpan pathway matrix. Random combinations of these vectors can
then produce alternate optimal MinSpan pathway matrices.

For each original MinSpan vector, we enumerate new alternate MinSpan vectors. For the jth run,
the algorithm looks as follows:
min(c-b)

c=h’
be&{0,1}

S'v=0
Ilb<v=<ub
-10005, < v, =10005,

x'v=0 z

where b” is the binarized version of the original MinSpan pathway vector, b is the binarized
alternate MinSpan pathway vector that is being calculated, By is a matrix containing binarized
versions of the previously determined alternates, and # is the total number of active reactions in
that MinSpan vector. The original pathway vector is a feasible solution as to allow it to be a
feasible warm up point. An alternate is chosen when any feasible solution is found that is not the
original MinSpan pathway vector. The algorithm is allowed to run for 5 minutes and if no
alternate is found, the algorithm moves onto the next MinSpan vector. The remaining constraints
are the same as the original formulation in Materials and Methods.

We calculated alternate MinSpan for the S. cerevisiae and E. coli metabolic models. Of the 332
metabolic pathways in S. cerevisiae, 148 do not have any alternatives and 50 have one
alternative. Of the 750 metabolic pathways in E. coli, 328 do not have any alternates and 152
have one alternate. The number of alternates per pathway for both models is shown in Figure
S12.

Using the alternate pathways, we built 1000 MinSpan pathway matrices for each of the S.
cerevisiae and E. coli metabolic models. We determined the difference between the original
MinSpan pathway matrix and the 1000 alternates. Using a K-nearest neighbor search, we
matched the pathways from the original matrix to an alternate matrix using the Hamming
distance, or the percentage of coordinates that differ. On average for S. cerevisiae across the
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comparison of all 1000 alternate MinSpan pathway matrices to the original, a single alternate
pathway differed by 0.66% reactions, meaning that for every 10 pathways in the network, there
would be one pathway, with one reaction difference. In E. coli, each pathway differed on average
by 0.26% reactions.

We then repeated the correlation analysis (Figure 2, main text) with the 1000 pathway matrices
to see how much the biological relevance results changed. We found very little difference for the
correlation analysis across the 1000 pathway matrices. Especially, when comparing to the other
databases (Figure 2, main text), the MinSpan (and the alternates) results were quite distinct.

For PPIs, the original S. cerevisiae MinSpan pathway matrix had a coverage of 4984 interactions
with ROC AUC of 0.953. The 1000 alternate models had similar values (coverage: 5053 — mean,
31 — standard deviation, [4953, 5143] - range; ROC AUC: 0.9623 — mean, 0.0061 — standard
deviation, [0.943, 0.9684] - range). For positive genetic interactions, the original S. cerevisiae
MinSpan pathway matrix had a coverage of 12208 interactions with ROC AUC of 0.922. The
1000 alternate models had similar results (coverage: 12350 — mean, 79.8 — standard deviation,
[12110, 12609] - range; ROC AUC: 0.8964 — mean, 0.0189 — standard deviation, [0.8318, 0.929]
- range).

For transcriptional regulation in E. coli, the results were also very similar. For local regulation,
the original results had a coverage of 9691 interactions and a ROC AUC of 0.935. The 1000
alternates had similar values (coverage: 10017.7 — mean, 108 — standard deviation, [9727,
10402] — range; ROC AUC: 0.935 — mean, 0.002 — standard deviation, [0.930, 0.940] — range).
For intermediate regulation, the original results had a coverage of 10590 interactions and a ROC
AUC of 0.851. For the 1000 alternates, the results were similar (coverage: 10943.3 — mean,
113.6 — standard deviation, [10640, 11342] — range; ROC AUC: 0.843 — mean, 0.0101 —
standard deviation, [0.810, 0.868] — range). Finally, for global regulation, the original results had
a coverage of 15013 interactions with a ROC AUC of 0.556. The alternate MinSpan pathway
matrices had similar results (coverage: 15487.8 — mean, 206.7 — standard deviation, [14984,
16076] — range; ROC AUC: 0.545 — mean, 0.0069 — standard deviation, [0.526, 0.562] — range).
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Supplementary Tables

Table S1: E. coli growth conditions

Strain | Gene ID | O; (+/-) | Growth Condition
wt n/a + M9 + 4 g/L Glc
Acra b0080 + M9 + 4 g/L Glc
AmntR b0817 + M9 + 4 g/L Glc
Anac b1988 + M9 + 4 g/L Glc
wt n/a + M9 + 4 g/L Glc + 20 mg/L L-Tryptophan
Acra b0080 + M9 + 4 g/L Glc + 20 mg/L L-Tryptophan
wt n/a + M9 + 4 g/L Glc + 10 mM Adenine
Anac b1988 + M9 + 4 g/L Glc + 10 mM Adenine
wt n/a - M9 + 4 g/L Glc
AmntR b0817 - M9 + 4 g/L Glc
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Table S2: Coverage and Area Under Curve of ROC Curve Values for Correlation

Analysis
Gene

ROC AUC MinSpan KEGG BioCyc Ontology MaxSpan RandSpan
Protein-protein 0.958 0.691  0.890 0.953 0.802 0.865 +/- 0.051
Positive genetic 0.937* 0.520  0.800 0.670 0.502 0.611 +/- 0.0953
TR - local 0.940* 0.751  0.900 0.839 0.710 0.818 +/- 0.0323
TR -
intermediate 0.853* 0.776  0.778 0.737 0.576 0.600 +/- 0.0403
TR - global 0.586 0.542  0.598 0.553 0.434 0.515 4+/- 0.0876
Total #
interactions
Protein-protein 4984 157 1229 8777 39044 1903 +/- 942
Positive genetic 12208 186 1679 18027 79896 28708 +/- 8977
TR - local 9691 198 972 13133 177491 128790 +/- 22067
TR -
intermediate 10590 343 1363 13857 180427 130983 +/- 22373
TR - global 15013 541 2162 18442 227000 166850 +/- 28492

Abbreviations: TR — transcriptional regulation
Note: RandSpan values are the mean and standard deviation of 100 randomly generated linear
bases of the null space
* - MinSpan is significantly more representative based on AUC of ROC than at least two other

databases

T - MinSpan is significantly less representative based on AUC of ROC than at least one other

database
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Table S3: Statistical significance of differences in AUC of ROC curves

Protein-
protein

KEGG BioCyc GO MinSpan ~ MaxSpan RandSpan
KEGG - 2.01E-01 8.32E-02 7.80E-02  4.74E-01 2.81E-01
BioCyc - - 2.01E-01 1.68E-01 1.36E-01 7.38E-01
GO - - - 9.01E-01 1.33E-03 1.75E-01
MinSpan - - - - 8.39E-04 1.52E-01
MaxSpan - - - - - 3.84E-01
RandSpan - - - - - -
Positive
Genetic

KEGG BioCyc GO MinSpan ~ MaxSpan RandSpan
KEGG - 6.78E-02  3.14E-01 3.16E-03  9.01E-01 6.28E-01
BioCyc - - 2.07E-01 1.33E-01  8.62E-04 2.23E-01
GO - - - 1.47E-03  4.05E-02 6.96E-01
MinSpan - - - - 9.80E-11 2.26E-02
MaxSpan - - - - - 4.42E-01
RandSpan - - - - - -
TR -local

KEGG BioCyc GO MinSpan ~ MaxSpan RandSpan
KEGG - 9.30E-03 1.16E-01 2.79E-04  4.48E-01 2.15E-01
BioCyc - - 9.45E-02 1.81E-01  2.45E-08 1.41E-02
GO - - - 2.35E-04  4.69E-05 4.99E-01
MinSpan - - - - 2.50E-19 1.71E-07
MaxSpan - - - - - 1.24E-04
RandSpan - - - - - -
TR - int

KEGG BioCyc GO MinSpan ~ MaxSpan RandSpan
KEGG - 947E-01  1.44E-01 3.38E-03  1.83E-14 1.16E-11
BioCyc - - 1.85E-02 3.97E-06  1.08E-29 7.54E-25
GO - - - 3.30E-18  1.23E-31 4.74E-25
MinSpan - - - - 2.76E-60 1.38E-54
MaxSpan - - - - - 3.44E-03
RandSpan - - - - - -
TR - global

KEGG BioCyc GO MinSpan ~ MaxSpan RandSpan
KEGG - 5.38E-02  6.71E-01 1.04E-01  5.32E-05 3.14E-01
BioCyc - - 5.51E-04 3.40E-01  4.82E-30 1.93E-11
GO - - - 1.66E-06  5.34E-52 6.55E-14
MinSpan - - - - 3.92E-60 8.86E-31
MaxSpan - - - - - 2.43E-68
RandSpan - - - - - -
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Table S4: Coverage and Area Under Curve of ROC Curve Values for Correlation
Analysis (KEGG subset)

ROC AUC MinSpan KEGG BioCyc Gene Ontology
Protein-protein 0.845 0.691 0.737 0.805
Positive genetic 0.814 0.520  0.736 0.812
TR - local 0.954* 0.751  0.723 0.879
TR - intermediate 0.792 0.776  0.717 0.824
TR - global 0.614 0.542  0.554 0.681

* - MinSpan is significantly more representative based on AUC of ROC than at least two other
databases

T - MinSpan is significantly less representative based on AUC of ROC than at least one other
database
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Table S5: Statistical significance of differences in AUC of ROC curves (KEGG

subset)

Protein-
protein

KEGG  BioCyc GO MinSpan
KEGG - 8.26E-01 5.72E-01  4.29E-01
BioCyc - - 7.31E-01 5.72E-01
GO - - - 8.26E-01
MinSpan - - - -
Positive
Genetic

KEGG  BioCyc GO MinSpan
KEGG - 2.44E-01 9.90E-02  9.69E-02
BioCyc - - 6.62E-01 6.55E-01
GO - - - 9.93E-01
MinSpan - - - -
TR -local

KEGG  BioCyc GO MinSpan
KEGG - 6.93E-01 4.51E-02  3.00E-04
BioCyc - - 1.60E-02  5.64E-05
GO - - - 1.00E-01
MinSpan - - - -
TR - int

KEGG  BioCyc GO MinSpan
KEGG - 1.07E-01 1.54E-01 6.61E-01
BioCyc - - 2.38E-03  4.03E-02
GO - - - 3.23E-01
MinSpan - - - -
TR - global

KEGG  BioCyc GO MinSpan
KEGG - 7.41E-01 9.46E-05  5.12E-02
BioCyc - - 3.58E-04  1.06E-01
GO - - - 5.26E-02
MinSpan - - - -
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Table S6: Coverage and Area Under Curve of ROC Curve Values for Correlation
Analysis (BioCyc subset)

ROC AUC MinSpan KEGG BioCyc Gene Ontology
Protein-protein 0.870 0.610  0.890 0.939
Positive genetic 0.810 0.674  0.800 0.730
TR - local 0.882 0.659  0.900 0.887
TR - intermediate | 0.6977 0.625  0.778 0.773
TR - global 0.711* 0.531  0.598 0.645

* - MinSpan is significantly more representative based on AUC of ROC than at least two other
databases

T - MinSpan is significantly less representative based on AUC of ROC than at least one other
database
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Table S7: Statistical significance of differences in AUC of ROC curves (BioCyc

subset)

Protein-
protein

KEGG BioCyc GO MinSpan
KEGG - 1.63E-04  1.98E-06  6.11E-04
BioCyc - - 3.69E-01 7.55E-01
GO - - - 2.27E-01
MinSpan - - - -
Positive
Genetic

KEGG BioCyc GO MinSpan
KEGG - 2.75E-01  6.37E-01 2.40E-01
BioCyc - - 5.40E-01 9.35E-01
GO - - - 4.87E-01
MinSpan - - - -
TR -local

KEGG BioCyc GO MinSpan
KEGG - 5.77E-07  3.05E-06  6.17E-06
BioCyc - - 7.50E-01 6.47E-01
GO - - - 8.88E-01
MinSpan - - - -
TR - int

KEGG BioCyc GO MinSpan
KEGG - 3.99E-12  2.05E-11 1.52E-03
BioCyc - - 8.01E-01 1.27E-04
GO - - - 3.46E-04
MinSpan - - - -
TR - global

KEGG BioCyc GO MinSpan
KEGG - 1.01E-04  5.23E-11 3.50E-23
BioCyc - - 6.35E-03  9.23E-12
GO - - - 3.06E-05
MinSpan - - - -
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Table S8: Coverage and Area Under Curve of ROC Curve Values for Correlation
Analysis (GO subset)

ROC AUC MinSpan KEGG BioCyc Gene Ontology
Protein-protein 0.931* 0.620  0.895 0.917
Positive genetic 0.740 0.630  0.741 0.670
TR - local 0.924* 0.651  0.747 0.840
TR - intermediate | 0.787* 0.594  0.681 0.737
TR - global 0.582* 0.525  0.554 0.553

* - MinSpan is significantly more representative based on AUC of ROC than at least two other
databases

T - MinSpan is significantly less representative based on AUC of ROC than at least one other
database
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Table S9: Statistical significance of differences in AUC of ROC curves (GO
subset)

Protein-
protein

KEGG BioCyc GO MinSpan
KEGG - 9.04E-05  4.44E-11 1.93E-11
BioCyc - - 1.64E-02  1.19E-02
GO - - - 9.01E-01
MinSpan - - - -
Positive
Genetic

KEGG BioCyc GO MinSpan
KEGG - 243E-01  6.82E-01  2.49E-01
BioCyc - - 4.52E-01  9.88E-01
GO - - - 4.61E-01
MinSpan - - - -
TR -local

KEGG BioCyc GO MinSpan
KEGG - 1.72E-02  7.59E-07  9.41E-15
BioCyc - - 1.25E-02  8.53E-08
GO - - - 4.61E-03
MinSpan - - - -
TR - int

KEGG BioCyc GO MinSpan
KEGG - 7.92E-09  7.21E-20  4.55E-30
BioCyc - - 1.13E-04  2.86E-13
GO - - - 3.65E-04
MinSpan - - - -
TR - global

KEGG BioCyc GO MinSpan
KEGG - 1.05E-05  1.69E-05 1.96E-16
BioCyc - - 9.16E-01  3.52E-05
GO - - - 2.22E-05
MinSpan - - - -
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Table $S10: Coverage and Area Under Curve of ROC Curve Values for
Correlation Analysis (MinSpan subset)

ROC AUC MinSpan KEGG BioCyc Gene Ontology
Protein-protein 0.958 0.577  0.836 0.953
Positive genetic 0.937 0.713  0.953 0.900
TR - local 0.940* 0.602  0.644 0.742
TR - intermediate | 0.853* 0.564  0.604 0.700
TR - global 0.586* 0.519  0.555 0.557

* - MinSpan is significantly more representative based on AUC of ROC than at least two other
databases

T - MinSpan is significantly less representative based on AUC of ROC than at least one other
database
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Table S11: Statistical significance of differences in AUC of ROC curves

(MinSpan subset)
Protein-
protein
KEGG  BioCyc GO MinSpan
KEGG - 8.77E-06 7.85E-07 1.26E-07
BioCyc - - 6.50E-01 4.38E-01
GO - - - 7.46E-01
MinSpan - - - -
Positive
Genetic
KEGG  BioCyc GO MinSpan
KEGG - 1.12E-02 7.16E-02 2.17E-02
BioCyc - - 4.67E-01 8.05E-01
GO - - - 6.28E-01
MinSpan - - - -
TR -local
KEGG  BioCyc GO MinSpan
KEGG - 2.08E-01 1.59E-05 5.21E-28
BioCyc - - 2.44E-03 8.23E-24
GO - - - 4.63E-14
MinSpan - - - -
TR - int
KEGG  BioCyc GO MinSpan
KEGG - 2.93E-03 3.87E-21 3.66E-51
BioCyc - - 2.17E-12  2.58E-45
GO - - - 1.89E-28
MinSpan - - - -
TR - global
KEGG  BioCyc GO MinSpan
KEGG - 1.12E-07 4.05E-08 6.82E-20
BioCyc - - 8.51E-01 1.05E-05
GO - - - 2.44E-05
MinSpan - - - -
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Table S12: Coverage and Area Under Curve of ROC Curve Values for
Correlation Analysis (Union)

ROC AUC

MinSpan KEGG BioCyc Gene Ontology

Protein-protein
Positive genetic
TR - local

TR - intermediate
TR - global

0.906 0.605  0.859 0.859
0.721 0.595  0.787 0.696
0.918* 0.593  0.645 0.669
0.763* 0.557  0.634 0.609
0.584* 0.52 0.551 0.518

* - MinSpan is significantly more representative based on AUC of ROC than at least two other

databases

T - MinSpan is significantly less representative based on AUC of ROC than at least one other

database
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Table S13: Statistical significance of differences in AUC of ROC curves (Union)

Protein-
protein

KEGG  BioCyc GO MinSpan
KEGG - 1.33E-05 1.39E-05 5.03E-08
BioCyc - - 9.92E-01 3.18E-01
GO - - - 3.13E-01
MinSpan - - - -
Positive
Genetic

KEGG  BioCyc GO MinSpan
KEGG - 1.57E-02 2.24E-01 1.23E-01
BioCyc - - 2.46E-01 4.02E-01
GO - - - 7.50E-01
MinSpan - - - -
TR -local

KEGG  BioCyc GO MinSpan
KEGG - 7.86E-02 1.45E-02 2.52E-27
BioCyc - - 4.95E-01 1.59E-21
GO - - - 2.77E-19
MinSpan - - - -
TR - int

KEGG  BioCyc GO MinSpan
KEGG - 1.42E-11 4.69E-06 1.45E-42
BioCyc - - 2.41E-02 7.08E-26
GO - - - 6.45E-32
MinSpan - - - -
TR - global

KEGG  BioCyc GO MinSpan
KEGG - 4.50E-10 7.29E-01 5.14E-29
BioCyc - - 541E-11 2.84E-11
GO - - - 6.51E-30
MinSpan - - - -
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Table S14: Primary Literature Sources for verified transcription factor
activities

Shift Transcription | PMID or URL
Factor
Arabinose FhlA http://www.sciencedirect.com/science/article/pii/S0360319912017259
Fumarate NarLP 16199562
Fumarate DcuR 9765574
Fumarate IscR 16677314
Galactose HupAB 16258062
Lactose HupAB 16258062
Pyruvate MntR http://onlinelibrary.wiley.com/doi/10.1002/0470862106.ia129/full
Xylose RpoS 19650909
Nitrate IscR 16677314
Glutathione | Nac 15286142
Isoleucine TdcAR 9871012
Isoleucine Met] 4580268
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Figure S1: Pathway comparison on a toy model. (A) The toy model contains 14 moieties and
18 biochemical transformations. The stoichiometric matrix has a rank of 14, meaning that the
null space is 4 dimensional. (B) The MinSpan algorithm calculates 4 pathways as the dimension
of the null space is 4. They are ordered from shortest to longest pathway. (C) The toy model has
8 Extreme Pathways and (D) 8 Elementary Flux Modes.
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Figure S2: Comparison of MinSpan pathways and Extreme Pathways for the E. coli core mode
are presented. (A) The 23 MinSpan pathways for this model were hierarchically clustered and
placed into subsystem categories of glycolysis, anaplerotic pathways, fermentation, TCA, and
pentose phosphate pathway. The MinSpan pathways are on average 20.8 reactions in length. (B)
There are 16690 Extreme Pathways which were hierarchically clustered into 50 groups. The
number of pathways per group and average length of pathways within that group are shown. The

MinSpan pathways are a subset of the Extreme Pathways. The coloring on the dendrogram
branch relates the location of the MinSpan pathways in the Extreme Pathway groups.
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Figure S3: Yeast-2-Hybrid protein interactions are conserved in metabolic pathways. The
number of Y2H interaction pairs that are in metabolic pathways is shown for each metabolic
pathway type by the x-axis value of the red line. 10,000 lists of random protein pairs in yeast
metabolism were generated. The number of random protein pairs that are within metabolic
pathways are shown by the histogram. Enrichment of true Y2H interaction pairs in metabolic
pathways is highly enriched (p < le-4, empirical test) for all pathway types with a high
enrichment factor (3.36x for MinSpan, N/A for KEGG (median of random lists = 0), 25x for
YeastCyc, and 1.68x for Gene Ontology).
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Figure S4: Receiver operating characteristic (ROC) and precision-recall (PR) curves for
correlation analysis comparing metabolic pathways (MinSpan, BioCyc, and KEGG) and
metabolic gene classifications (Gene Ontology) versus the known underlying biomolecular
interactions (protein-protein, positive genetic, and transcriptional regulation). These curves are
for the original results presented in the main text.
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Figure S5: Receiver operating characteristic (ROC) and precision-recall (PR) curves for
correlation analysis comparing metabolic pathways (MinSpan, BioCyc, and KEGG) and
metabolic gene classifications (Gene Ontology) versus the known underlying biomolecular
interactions (protein-protein, positive genetic, and transcriptional regulation). These curves are
for the subset of interactions covered by KEGG.
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Figure S6: Receiver operating characteristic (ROC) and precision-recall (PR) curves for
correlation analysis comparing metabolic pathways (MinSpan, BioCyc, and KEGG) and
metabolic gene classifications (Gene Ontology) versus the known underlying biomolecular
interactions (protein-protein, positive genetic, and transcriptional regulation). These curves are
for the subset of interactions covered by BioCyc.
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Figure S7: Receiver operating characteristic (ROC) and precision-recall (PR) curves for
correlation analysis comparing metabolic pathways (MinSpan, BioCyc, and KEGG) and
metabolic gene classifications (Gene Ontology) versus the known underlying biomolecular
interactions (protein-protein, positive genetic, and transcriptional regulation). These curves are
for the subset of interactions covered by Gene Ontology.
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Figure S8: Receiver operating characteristic (ROC) and precision-recall (PR) curves for
correlation analysis comparing metabolic pathways (MinSpan, BioCyc, and KEGG) and
metabolic gene classifications (Gene Ontology) versus the known underlying biomolecular
interactions (protein-protein, positive genetic, and transcriptional regulation). These curves are
for the subset of interactions covered by MinSpan.
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Figure S9: Receiver operating characteristic (ROC) and precision-recall (PR) curves for
correlation analysis comparing metabolic pathways (MinSpan, BioCyc, and KEGG) and
metabolic gene classifications (Gene Ontology) versus the known underlying biomolecular
interactions (protein-protein, positive genetic, and transcriptional regulation). These curves are
for the union of all interactions covered by KEGG, BioCyc, Gene Ontology, and MinSpan.
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Figure S10: Transcription factor activities can be predicted based on the E. coli metabolic
network and its MinSpan pathways. (A) Projecting sample reaction flux states into MinSpan
pathways elucidates specific pathways that are significantly changed and their associated
transcription factors. Small arrows represent reactions, while thick arrows represent portions of
MinSpan pathways. Activated reactions or pathways during stimulation are indicated in red,
repressed in blue. For L-arginine stimulation, 4 pathways and 3 TFs are changed, including
ArgR. (B) For L-leucine stimulation, 2 pathways and 2 TFs are changed: Lrp and LeuO. (C) For
L-tryptophan stimulation, 4 pathways and 3 TFs are changed, including TrpR and TyrR. (D) For
adenine stimulation, 5 pathways and 4 TFs are changed, including PurR. (E) For oxygen shift, 70
pathways and 54 TFs are changed. 12 TFs are significantly enriched including Fnr. Oxygen
associated TFs are shown in yellow. Reaction and metabolite abbreviations are provided at
http://bigg.ucsd.edu.
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Figure S11: Comparison of conservation of the genome-scale pathways of metabolism in (A)
S. cerevisiae and (B) E. coli. The MinSpan pathway matrices differ in reaction number (992 vs
2166 metabolic reactions), number of pathways (332 vs 750), and overall sparsity (2.26% and
0.97%). However, the distribution of the number of reactions per pathway and the usage of
reactions across the pathways is similar. Most of the pathways contain around 20 reactions. Most
reactions are used only once or a few times across all the MinSpan pathways. (C) The MinSpan
pathways are conserved, based on Pearson correlation, across the two species based on gene
products. However, the similarity between pathways is less than human-defined pathways
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Figure S12: Histogram of the number of alternate pathways for each vector of the MinSpan
matrices of S. cerevisiae (IMM904) and E. coli (1JO1366). The majority of pathways have no
alternates or very few (< 5). A few pathways have many alternates.
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Figure S13: The Connection Specificity Index (CSI) was used to define the correlation and
specificity between two pathways to determine their similarity. An empirically derived threshold
is needed to make sure that the “noise” from correlation analysis is subtracted. Typically, a
threshold of 0.05 is used. For a more robust analysis, we inspected the total distribution of
Pearson correlations (logl0, absolute value) to determine our thresholds. A threshold (red line)
was chosen in order to remove the majority of noise for (A) S. cerevisiae, and (B) E. coli.
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