Receptor	Inhibitor Concentration	<i>K_d</i> (apparent) (Μ)	<i>K_d</i> (calculated) (M) Competitive Model
Cripto-1	40 nM	2.58e ⁻⁰⁸	5.57e ⁻⁰⁸
	400 nM	N.D.	5.43e ⁻⁰⁷
Alk4	40 nM	1.83e ⁻⁰⁷	4.30e ⁻⁰⁷
	400 nM	N.D	4.20e ⁻⁰⁶
ActRIIB	40 nM	3.00e ⁻⁰⁷	5.60e ⁻⁰⁷
	400 nM	N.D.	5.47e ⁻⁰⁶
BMPRII	40 nM	3.85e ⁻⁰⁹	6.69e ⁻⁰⁹
	400 nM	2.1e ⁻⁰⁸	6.52e ⁻⁰⁸
	4000 nM	1.9e ⁻⁰⁸	6.50e ⁻⁰⁷

Table S1: Inhibition analysis, manuscript figure 4

Apparent K_d measured in the presence of the Cerberus ($K_{d(apparent)}$) approximately obeys the equation for competitive binding, $K_{dapp} = K_d(1 + [Cerberus]/K_i)$ when comparing binding of Nodal to Cripto, ALK4 and ActRIIB with and without Cerberus. This is not the case for BMPRII. K_d is the dissociation binding constant of the Nodal-receptor interaction in the absence of Cerberus. K_i is the dissociation binding constant of the Nodal-Cerberus interaction.