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In this Supplementary Information we collect the proofs of all the results we stated in
the Theoretical Results section.

Proof of Proposition 1. Fix, for notational simplicity, i = 1. We have U1(C, . . . , C) =
b− c and

U1(D,C, . . . , C) = b− β1
(
b− bN − 2

N − 1
+ c

)
= b− bβ1

(N − 1)
− cβ1
N − 1

.

It is clear that if N is large enough (depending on the player and on b and c), one has
U1(D,C, . . . , C) > U1(C, . . . , C).

Proof of Proposition 2. Fix player i = 1. We have U1(1, . . . , 1) = γN and

U1(0, 1, . . . , 1) = γ(N − 1) + 1− β1 (γ(N − 1) + 1− γ(N − 1))

= γ(N − 1) + 1− β1.

It is clear then clear that the condition U1(0, 1, . . . , 1) > U1(1, . . . , 1) is independent of
N .

Proof of Proposition 3. Fix i = 1. We have U1(C, . . . , C) = α1(b− c) + (1− α1)(b−
c)(N − 1) and

U1(D,C, . . . , C) = α1b+ (1− α1)b+ (1− α1)(N − 1)

(
b(N − 2)

N − 1
− c
)

= b+ (1− α1)(bN − 2b− cN + c).

Observe that the condition U1(D,C, . . . C) > U1(C, . . . , C) reduces to α > 1− c
b

and
so it does not depend on N .
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Proof of Proposition 4. We have U1(1, . . . , 1) = α1γN + γN2 − α1γN
2 and

U1(0, 1, . . . , 1) = α1(1 + γ(N − 1)) + (1− α1)(1 + γ(N − 1)) + γ(1− α1)(N − 1)2

= 1− γN + γN2 + 2α1γN − α1γN
2 − α1γ.

It is then clear that the condition U1(0, 1, . . . , 1) < U1(1, . . . , 1) reduces to

1− α1γ + γN(α1 − 1) < 0,

which is always verified if N is large enough.

Proof of Theorem 1. Since Gps = G, then σps is the Nash equilibrium of the original
game. Since there is no incentive to deviate from a Nash equilibrium, the τ measure is
the Dirac measure concentrated on J = ∅. Therefore vi(ps) coincides with the payoff
in equilibrium; that is, vi(ps) = 1.

Let now pc be the fully cooperative coalition structure and observe that, for all j ∈ P ,
one has Ij(pc) = 1− γ and Dj(pc) = γN − 1. Consequently, τi,j(pc) = 1−γ

γ(N−1) , for all
i, j ∈ P , i 6= j. Now, ei,J(pc) = γ, for all J 6= ∅, and ei,∅(pc) = γN . Therefore,

vi(pc) = γN

(
1− 1− γ

γ(N − 1)

)N−1
+ γ

(
1−

(
1− 1− γ

γ(N − 1)

)N−1)

= γN

(
γN − 1

γ(N − 1)

)N−1
+ γ

(
1−

(
γN − 1

γ(N − 1)

)N−1)
.

To compute the cooperative equilibrium, we observe that this would be the lowest con-
tribution among the ones which, if contributed by all players, would give to all players a
payoff of at least vi(pc). To compute this contribution it is enough to solve the equation

1− λ+ γNλ = vi(pc),

whose solution is indeed λ = vi(pc)−1
γN−1 , as stated.

It remains to show that the cooperative equilibrium is increasing with N . To this end,
we replaceN by a continuous variable x ≥ 2 and denote v(x) := vi(pc), f(x) =

v(x)−1
γx−1 ,

and r(x) =
(

γx−1
γ(x−1)

)x−1
. Observe that all these functions are differentiable in our

domain of interest x ≥ 2. Our aim is to show that f(x) is increasing, that is, f ′(x) > 0.
We start by observing that r(x) is increasing. This can be seen essentially in the same
way as one sees the standard fact that

(
1 + 1

n

)n is increasing in n, by using Bernoulli’s
inequality. Hence, we have

v′(x) = γr(x) + γr′(x)(x− 1) > γr(x).
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Consequently, using also the fact that γxr(x) = v(x)− γ(1− r(x)), we conclude

f ′(x) =
v′(x)(γx− 1)− γ(v(x)− 1)

(γx− 1)2

>
γ(γxr(x)− v(x) + 1)

(γx− 1)2

=
γ(1− γ(1− r(x)))

(γx− 1)2

> 0,

where, the last inequality follows from the fact that both γ and r(x) are strictly smaller
than 1.

Proof. The forecast associated to the selfish coalition structure is vi(ps) = 0, for all
players, corresponding to the payoff in (Nash) equilibrium. To compute the forecast
associated to the fully cooperative coalition structure, observe that ei,∅(pc) = b − c,
corresponding to Pareto optimum where all players cooperate. The incentive to deviate
from the cooperative strategy is Ij(pc) = c, while the disincentive is Dj(pc) = b − c,
corresponding to the loss incurred in case all other players anticipate player j’s defection
and decide to defect as well. Finally, ei,J(pc) = −c, for all J 6= ∅, corresponding to the
strategy profile where only player i cooperates and all other players defect. Hence we
have

vi(pc) = (b− c)
(
1− c

b

)N−1
− c

(
1−

(
1− c

b

)N−1)
.

Of course, if vi(pc) ≤ 0, then the cooperative equilibrium coincides with the Nash
equilibrium. Otherwise, by symmetry, it is the only strategy σ such that

ui(σ, . . . , σ) = vi(pc), (1)

for all i ∈ P . Setting σ = λC + (1− λ)D, we obtain

ui(σ, . . . , σ) = λ

N−1∑
k=0

λN−1−k(1− λ)k
(
N − 1

k

)(
b(N − 1− k)

N − 1
− c
)

+ (1− λ)
N−1∑
k=0

λN−1−k(1− λ)k
(
N − 1

k

)(
b(N − 1− k)

N − 1

)

=
N−1∑
k=0

λN−1−k(1− λ)k
(
N − 1

k

)
b(N − 1− k)

N − 1
− cλ

= b− cλ− b

N − 1

N−1∑
k=0

λN−1−k(1− λ)k
(
N − 1

k

)
k.

3



Now we use the fact that

N−1∑
k=0

λN−1−k(1− λ)k
(
N − 1

k

)
k = (1− λ)(N − 1),

to reduce Equation (1) to

λ(b− c) = vi(pc), (2)

which concludes the proof.
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