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2 P.J. SCHULTE ET AL.

A.1. DEMONSTRATION THAT (5)–(8) DEFINE AN OPTIMAL REGIME

For k = 1, . . . ,K and any d ∈ D, define the random variables αk{S̄∗k(d̄k−1)} such that

(A.1) αk{S̄∗k(d̄k−1)}(ω) = V
(1)
k (s̄k, ūk−1)

for any ω ∈ Ω, where (s̄k, ūk−1) are defined by (3). Because V onek as defined in (6) and (8)

are functions of arguments (s̄k, āk−1) ∈ S̄k × Āk−1, whereas the random variable S̄∗k(d̄k−1) has

realizations only in S̄k, we find it convenient to introduce (A.1) to make this distinction clear. In

words, αk{S̄∗k(d̄k−1)} is the expected outcome conditional on a patient in the population having

followed regime d through decision point k − 1 and then following the optimal regime from that

point on.

We now argue that d(1)opt is an optimal regime; i.e., d(1)opt satisfies (4). We first show that, for

any d ∈ D,

E{Y ∗(d)|S1 = s1, S
∗
2(d1), . . . , S∗K(d̄K−1)} ≤ E{Y ∗(d̄K−1, d

(1)opt
K )|S1 = s1, S

∗
2(d1), . . . , S∗K(d̄K−1)}

= αK{s1, S
∗
2(d1), . . . , S∗K(d̄K−1)}.(A.2)

This follows because, for the set in Ω where {S∗2(d1) = s2, . . . , S
∗
K(d̄K−1) = sK}, the left- and

right-hand sides of the first line of (A.2) are equal to

E{Y ∗(d)|S̄∗K(d̄K−1) = s̄K} = E{Y ∗(ūK−1, uK)|S̄∗K(ūK−1) = s̄K},(A.3)

E{Y ∗(d̄K−1, d
(1)opt
K )|S̄∗(d̄K−1) = s̄K} = E[Y ∗{ūK−1, d

(1)opt
K (s̄K , ūK−1)}|S̄∗K(ūK−1) = s̄K ],(A.4)

respectively. By the definition of d
(1)opt
K in (5), (A.4) is greater than or equal to (A.3), and,

by the definition of V
(1)
K in (6), (A.4) equals V

(1)
K (s̄K , ūK−1). Because these results hold for sets

{S∗2(d1) = s2, . . . , S
∗
K(d̄K−1) = sK} for any (s2, . . . , sK) such that (s1, . . . , sK , u1, . . . , uK−1) ∈ Γk,

and by the definition of αK in (A.1), (A.2) holds. Taking conditional expectations given S1 = s1

yields

E{Y ∗(d)|S1 = s1} ≤ E{Y ∗(d̄K−1, d
(1)opt
K )|S1 = s1}

= E[αK{s1, S
∗
2(d1), . . . , S∗K(d̄K−1)}|S1 = s1].(A.5)

The equality in (A.5) holds for any d̄K−1 = (d1, . . . , dK−1) with d ∈ D, hence it must hold for
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SUPPLEMENT TO Q- AND A-LEARNING METHODS 3

(d1, . . . , dK−2, d
(1)opt
K−1 ). Thus, we also have that

E{Y ∗(d̄K−2, d
(1)opt
K−1 , d

(1)opt
K )|S1 = s1}

= E[αK{S1, S
∗
2(d1), . . . , S∗K−1(d̄K−2), S∗K(d̄K−2, d

(1)opt
K−1 )}|S1 = s1].(A.6)

Similarly, for any k = K − 1, . . . , 1, we can show that E[αk+1{S1, S
∗
2(d1), . . . , S∗k+1(d̄k)}|S1 =

s1, S
∗
2(d1), . . . , S∗k(d̄k−1)] ≤ E[αk+1{S1, S

∗
2(d1), . . . , S∗k+1(d̄k−1, d

(1)opt
k )}|S1 = s1, S

∗
2(d1), . . . , S∗k(d̄k−1)]

= αk{s1, S
∗
2(d1), . . . , S∗k(d̄k−1)}, which implies for k = K − 1, . . . , 1,

E[αk+1{s1, S
∗
2(d1), . . . , S∗k+1(d̄k)}|S1 = s1] ≤ E[αk+1{s1, S

∗
2(d1), . . . , S∗k+1(d̄k−1, d

(1)opt
k )}|S1 = s1]

= E[αk{s1, S
∗
2(d1), . . . , S∗k(d̄k−1)}|S1 = s1](A.7)

Using (A.5) and (A.7) with k = K − 1, we thus have

E{Y ∗(d)|S1 = s1} ≤ E{Y ∗(d̄K−1, d
(1)opt
K )|S1 = s1} = E[αK{s1, S

∗
2(d1), . . . , S∗K(d̄K−1)|S1 = s1]

≤ E[αK{s1, S
∗
2(d1), . . . , S∗K(d̄K−2, d

(1)opt
K−1 )|S1 = s1](A.8)

= E[αK−1{s1, S
∗
2(d1), . . . , S∗K−1(d̄K−2)|S1 = s1]

Because of (A.6), the term in (A.8) is equal to E{Y ∗(d̄K−2, d
(1)opt
K−1 , d

(1)opt
K )|S1 = s1}. Hence,

E{Y ∗(d)|S1 = s1} ≤ E{(Y ∗(d̄K−1, d
(1)opt
K )|S1 = s1} ≤ E{Y ∗(d̄K−2, d

(1)opt
K−1 , d

(1)opt
K )|S1 = s1}

= E[αK−1{s1, S
∗
2(d1), . . . , S∗K−1(d̄K−2)|S1 = s1].(A.9)

Again, because d̄K−2 is arbitrary, if we replace it by (d̄K−3, d
(1)opt
K−2 ), the equality in (A.9) implies

(A.10) E{Y ∗(d̄K−3, d
(1)opt
K−2 )|S1 = s1} = E[αK−1{s1, S

∗
2(d1), . . . , S∗K−1(d̄K−3, d

(1)opt
K−2 )}|S1 = s1],

where, for any d, dk = (dk, . . . , dK). Using (A.7) with k = K − 2, (A.9), and (A.10), we obtain

E{Y ∗(d̄K−2, d
(1)opt
K−1 )|S1 = s1} = E[αK−1{s1, S

∗
2(d1), . . . , S∗K−1(d̄K−2)}|S1 = s1]

≤ E[αK−1{s1, S
∗
2(d1), . . . , S∗K−1(d̄K−3, d

(1)opt
K−2 )|S1 = s1] = E{Y ∗(d̄K−3, d

(1)opt
K−2 )}|S1 = s1}

= E[αK−2{s1, S
∗
2(d1), . . . , S∗K−2(d̄K−3)}|S1 = s1].

Continuing in this fashion, we may conclude that, for any d ∈ D,

E{Y ∗(d)|S1 = s1} ≤ · · · ≤ E{Y ∗(d̄k−1, d
(1)opt
k )|S1 = s1} ≤ · · · ≤ E{Y ∗(d(1)opt)|S1 = s1},

showing that d(1)opt defined in (5) and (7) is an optimal regime satisfying (4).
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4 P.J. SCHULTE ET AL.

A.2. DEMONSTRATION OF CORRESPONDENCE IN (19)

We make the consistency, sequential randomization, and positivity (15) assumptions given in

Section 3; the latter states that, for any (s̄k, āk−1) for which pr(S̄k = s̄k, Āk−1 = āk−1) > 0,

pr(Ak = ak|S̄k = s̄k, Āk−1 = āk−1) > 0 if (s̄k, āk−1) ∈ Γk and ak ∈ Ψk(s̄k, āk−1), k = 1, . . . ,K.

This ensures that the observed data contain information on the possible treatment options involved

in the class of regimes under consideration. We wish to show (16)–(18), which we restate here for

convenience as

pr(S̄k = s̄k, Āk = āk) > 0,(A.11)

pr(Sk+1 = sk+1|S̄k = s̄k, Āk = āk) = pr{S∗k+1(āk) = sk+1|S̄k = s̄k, Āk−1 = āk−1}(A.12)

= pr{S∗k+1(āk) = sk+1|S̄j = s̄j , Āj−1 = āj−1, S
∗
j+1(āj) = sj+1, . . . , S

∗
k(āk−1) = sk},(A.13)

for any (s̄k, āk−1) ∈ Γk and ak ∈ Ψk(s̄k, āk−1), k = 1, . . . ,K, for j = 1, . . . , k, where we define

(A.13) with j = k to be the same as the expression on the right-hand side of (A.12) and take

SK+1 = Y and S∗K+1(āK) = Y ∗(āK). If we can show (A.11), then the quantities in (9)–(14) are

well-defined. If (A.12)–(A.13) also hold, then the conditional distributions of the observed data

involved in the quantities in (9)–(14) are the same as the conditional distributions of the potential

outcomes involved in (5)–(8), and (19) follows.

Assume for the moment that (A.11) is true. We now demonstrate (A.12) and (A.13) must

follow. For any fixed k, by the consistency assumption, the left-hand expression in (A.12) is equal

to pr{S∗k+1(āk) = sk+1|S̄k = s̄k, Āk−1 = āk−1, Ak = ak}. It follows by the sequential randomization

assumption, which implies Ak ⊥⊥ S∗k+1(āk)|S̄k, Āk−1, that this is equal to the right-hand side of

(A.12). The equality in (A.13) follows by induction. First note that right-hand side of (A.12)

is equal to (A.13) with j = k. The equality of (A.12) and (A.13) for all j = 1, . . . , k can be

deduced if we can show that (A.13) being true for a given j implies that it is also true for

j − 1. For a given j = 2, . . . , k, by the consistency assumption, (A.13) is equal to pr{S∗k+1(āk) =

sk+1|S̄j−1 = s̄j−1, Āj−2 = āj−2, Aj−1 = aj−1, S
∗
j (āj) = sj , . . . , S

∗
k(āk−1) = sk}. By the sequential

randomization assumption, Aj−1 ⊥⊥ {S∗j (āj), . . . , S
∗
k+1(āk)}|S̄j−1, Āj−2, this expression is equal

to pr{S∗k+1(āk) = sk+1|S̄j−1 = s̄j−1, Āj−2 = āj−2, S
∗
j (āj) = sj , . . . , S

∗
k(āk−1) = sk}, which is

(A.13) for j − 1. Note, then, that this implies that the conditional densities in (A.13), which are

j-dependent, are the same as those on the left-hand side of (A.12), which are not and are also
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SUPPLEMENT TO Q- AND A-LEARNING METHODS 5

equal to pr{S∗k+1(āk) = sk+1|S̄∗k(āk−1) = s̄k}; i.e., the left-hand side of (A.12) is completely in

terms of the distribution of the observed data, whereas (A.13) with j = 1 is completely in terms

of the distribution of the potential outcomes.

We now prove (A.11) by induction. Assume we have shown (A.11) for a fixed k; i.e., if

(s̄k, āk−1) ∈ Γk and ak ∈ Ψk(s̄k, āk−1), then pr(S̄k = s̄k, Āk = āk) > 0. Then we must show

that

(A.14) pr(S̄k+1 = s̄k+1, Āk+1 = āk+1) > 0

if (s̄k+1, āk) ∈ Γk+1 and ak+1 ∈ Ψk+1(s̄k+1, āk). Note that

(A.15) pr(S̄k+1 = s̄k+1, Ākl = āk) = pr(Sk+1 = sk+1|S̄k = s̄k, Āk = āk) prS̄k = s̄k, Āk = āk).

By (A.15), (A.14) will be true if pr(Sk+1 = sk+1|S̄k = s̄k, Āk = āk) > 0. But by the arguments

above,

pr(Sk+1 = sk+1|S̄k = s̄k, Āk = āk) = pr{S∗k+1(āk) = sk+1|S̄∗k(āk−1) = s̄k},

which is positive because (s̄k+1, āk) ∈ Γk+1. Next, pr(S̄k+1 = s̄k+1, Āk+1 = āk+1) =

pr(Ak+1 = ak+1|S̄k+1 = s̄k+1, Āk = āk)pr(S̄k+1 = s̄k+1, Āk = āk). However, because ak+1 ∈

Ψk+1(s̄k+1, āk), by the positivity assumption, pr(Ak+1 = ak+1|S̄k+1 = s̄k+1, Āk = āk) > 0. The

proof is completed by noting that pr(S1 = s1, A1 = a1) = pr(A1 = a1|S1 = s1)pr(S1 = s1).

If s1 ∈ Γ1, pr(S1 = s1) > 0, and pr(A1 = a1|S1 = s1) > 0 for a1 ∈ Ψ(s1) by the positivity

assumption.

To demonstrate (19), consider first the definitions of d
(1)opt
K (s̄K , āK−1) and V

(1)
K (s̄K , āK−1)

given in (5) and (6). These quantities involve the conditional expectation of the potential out-

come Y ∗(āK) given S̄∗K(āk−1), which by (A.12)-(A.13) is the same as the conditional expec-

tation of Y given {S̄K = s̄K , ĀK = āK}. Thus, d
(1)opt
K (s̄K , āK−1) and V

(1)
K (s̄K , āK−1) are the

same as dopt
K (s̄K , āK−1) and VK(s̄K , āK−1) defined in (10) and (11). Next, from (7) and (8),

d
(1)opt
K−1 (s̄K−1, āK−2) = arg max

aK−1∈ΨK−1(s̄K−1,āK−2)
E[V

(1)
K {s̄K−1, S

∗
K(āK−2, aK−1), āK−2, aK−1}|S̄∗K−1(āK−2) =

s̄K−1]. This involves the conditional expectation of V
(1)
K , a function of S∗K(āK−1), given S̄∗K−1(āK−2) =

s̄K−1. Again, by (A.12)-(A.13), this is the same as the conditional expectation of the function

V
(1)
K of SK given {S̄K = s̄K , ĀK−1 = āK−1}. Because we have already shown that V

(1)
K is the

same as VK , this implies that d
(1)opt
K−1 (s̄K−1, āK−2) is given by

arg max
aK−1∈ΨK−1(s̄K−1,āK−2)

E{VK(s̄K−1, SK , āK−2, aK−1)|S̄K = s̄K , ĀK−1 = (āK−2, aK−2)},
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6 P.J. SCHULTE ET AL.

which is the same as dopt
K−1(s̄K−1, āK−2) given by (13) with k = K − 1. The argument continues

in a backward iterative fashion for k = K − 2, . . . , 1.

A.3. JUSTIFICATION FOR ṼKI IN A-LEARNING

We wish to show that

(A.16)

E
(
Vk+1(S̄k+1, Āk) + Ck(S̄k, Āk−1)[ I{Ck(S̄k, Āk−1) > 0} −Ak ]

∣∣∣ S̄k, Āk−1

)
= Vk(S̄k, Āk−1).

Defining Γ(S̄k+1, Āk) = Vk+1(S̄k+1, Āk)+Ck(S̄k, Āk−1)[ I{Ck(S̄k, Āk−1) > 0}−Ak ], we may write

(A.16) as

(A.17) E[ E{Γ(S̄k+1, Āk)|S̄k, Āk}|S̄k, Āk−1 ].

The inner expectation in (A.17) may be seen to be equal to

E{Vk+1(S̄k+1, Āk)|S̄k, Āk}+ Ck(S̄k, Āk−1)[ I{Ck(S̄k, Āk−1) > 0} −Ak ]

= Qk(S̄k, Āk) + Ck(S̄k, Āk−1)[ I{Ck(S̄k, Āk−1) > 0} −Ak ].

Substituting Qk(S̄k, Āk) = hk(S̄k, Āk−1) + AkCk(S̄k, Āk−1), hk(S̄k, Āk−1) = Qk(S̄k, Āk−1, 0), we

obtain E{Γ(S̄k+1, Āk)|S̄k, Āk} = hk(S̄k, Āk−1)+Ck(S̄k, Āk−1)I{Ck(S̄k, Āk−1) > 0} = Vk(S̄k, Āk−1).

Substituting this in (A.17) yields the result.

A.4. DEMONSTRATION OF EQUIVALENCE OF Q- AND A-LEARNING IN A SPECIAL

CASE

We take K = 1 and let pr(A1 = 1|S1 = s1) = π. Consider the A-learning estimating equations

(31) with k = 1, and take λ1(s1;ψ1) = ∂/∂ψ1C1(s1;ψ1). Then the equations become

n∑
i=1

∂C1(S1i;ψ1)

∂ψ1
(A1i − π){Yi −A1iC1(S1i;ψ1)− h1(S1i;β1)} = 0,

n∑
i=1

∂h1(S1i;β1)

∂β1
{Yi −A1iC1(S1i;ψ1)− h1(S1i;β1)} = 0.

Likewise, under these conditions, taking Q1(s1, a1) = a1C1(s1;ψ1) + h(s1;β1), the Q-learning

equation is
n∑
i=1

∂Q1(S1i, A1i; ξ1)

∂ξ1
{Yi −A1iC1(S1i;ψ1)− h1(S1i;β1)} = 0,
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SUPPLEMENT TO Q- AND A-LEARNING METHODS 7

where, with ξ1 = (ψT1 , β
T
1 )T ,

∂Q1(S1i, A1i; ξ1)

∂ξ1
=

 A1i
∂C1(S1i;ψ1)

∂ψ1
∂h1(S1i;β1)

∂β1

 .
Thus note that, with C1(s1;ψ1) and h1(s1;β1) linear in functions of S1, as long as terms of the

form in C1(s1;ψ1) are contained in those in h1(s1, β1), the Q- and A-learning estimating equations

are identical, as then

n∑
i=1

∂C1(S1i;ψ1)

∂ψ1
{Yi −A1iC1(S1i;ψ1)− h1(S1i;β1)} = 0.

For example, if C1(s1;ψ1) = ψ10 + sT1 ψ11 and h1(s1;β1) = β10 + sT1 β11, then note that

∂C1(S1i;ψ1)

∂ψ1
=
∂h1(S1i;β1)

∂β1
=

 1

S1i

 ,
and the result is immediate.

See Chakraborty et al. (2010) for discussion of the case K = 2.

A.5. EXAMPLE OF INCOMPATIBILITY OF Q-FUNCTION MODELS

To show (33), noting H2 = (1, s1, a1, s2)T = (KT1 , s2)T , we have

E{V2(s1, S2, a1; ξ2)|S1 = s1, A1 = a1} = KT1 β21 + β22E(S2|S1 = s1, A1 = a1)

+(KT1 ψ21)E{I(KT1 ψ21 + S2ψ22 > 0)|S1 = s1, A1 = a1}

+ψ22E{S2I(KT1 ψ21 + S2ψ22 > 0)|S1 = s1, A1 = a1}.

Taking ψ22 > 0, we also have I(KT1 ψ21 + S2ψ22 > 0) = I(S2 > −KT1 ψ21/ψ22), from which it

follows that E{I(KT1 ψ21 + S2ψ22 > 0)|S1 = s1, A1 = a1} = 1 − Φ{(−KT1 ψ21/ψ22 − KT1 γ)/σ} =

1−Φ(η) for η = −KT1 (ψ21/ψ22 +γ)/σ. Similarly, E{S2I(KT1 ψ21 +S2ψ22 > 0)|S1 = s1, A1 = a1} =

E{S2I(S2 > −KT1 ψ21/ψ22)|S1 = s1, A1 = a1}. It is straightforward to deduce that this is equal

to
∫∞
η (σt+ KT1 γ)ϕ(t) dt = σϕ(η) + (KT1 γ){1− Φ(η)}. Using E(S2|S1 = s1, A1 = a1) = KT1 γ and

combining yields (33).

A.6. CALCULATION OF E{H(D̂OPT)} AND R(D̂OPT)

Calculation for K = 1. We consider the generative data model in Section 6.1 and treatment

regimes of the form d(s1) = d1(s1) = I(ψ10 + ψ11s1 > 0) for arbitrary ψ10, ψ11. It is possible to

imsart-sts ver. 2011/12/01 file: suppmat.tex date: August 19, 2013



8 P.J. SCHULTE ET AL.

derive analytically H(d) = E{Y ∗(d)} in this case. Under the generative data model, E{Y ∗(d)} =

E[E{Y ∗(d)|S1}] = E[E{Y |S1, A1 = d1(S1)}] = β0
10 + β0

11E(S1) + β0
12E(S2

1) + E{I(ψ10 + ψ11S1 >

0)(ψ0
10 +ψ0

11S1)}, and S1 ∼ Normal(0, 1). It is straightforward to deduce that E{I(ψ10 +ψ11S1 >

0)} = pr(S1 > −ψ10/ψ11) or pr(S1 < −ψ10/ψ11) as ψ11 > 0 or ψ11 < 0, which is readily obtained

from the standard normal cdf. Likewise, E{S1I(ψ10+ψ11S1 > 0)} = E(S1|S1 > −ψ10/ψ11)pr(S1 >

−ψ10/ψ11) if ψ11 > 0 and E{S1I(ψ10 + ψ11S1 > 0)} = E(S1|S1 < −ψ10/ψ11)pr(S1 < −ψ10/ψ11)

if ψ11 < 0, which are again easily calculated in a manner similar to that in Section A.5. Thus,

E{Y ∗(dopt)} is obtained by substituting ψ0
10, ψ0

11 in the resulting expression. To approximate

E{H(d̂opt)} and hence R(d̂opt) for d̂opt = d̂opt
Q or d̂opt

A , we may use Monte Carlo simulation.

Specifically, for the bth of B Monte Carlo data sets, substitute the estimates ψ̂10,b, ψ̂11,b, say,

defining d̂opt for that data set in the expression for E{Y ∗(d)}, and call the resulting quantity

Ub. Then E{H(d̂opt)} is approximated by B−1∑B
b=1 Ub. Combining yields the approximation to

R(d̂opt).

Calculation for K = 2. The developments are analogous to those above. We consider the

generative data model in Section 6.2 and treatment regimes of the form d = (d1, d2), where

d1(s1) = I(ψ10 + ψ11s1 > 0) and d2(s1, s2, a1) = I(ψ20 + ψ21a1 + ψ22s2 > 0) for arbitrary

ψ10, ψ11, ψ20, ψ21, ψ22. Here, E{Y ∗(d)} = E
(
E[E{Y ∗(d)|S∗2(d), S1}|S1]

)
= E

{
E
(
E[Y |S2, S1, A1 =

d1(S1), A2 = d2{S2, S1, d1(S1)}]
∣∣∣S1, A1 = d1(S1)

) }
. Because S1 is binary taking values in {0, 1},

E{Y ∗(d)} = E
(
E[Y |S2, S1, A1 = d1(0), A2 = d2{S2, 0, d1(0)}]

∣∣∣S1 = 0, A1 = d1(0)
)

pr(S1 = 0) +

E
(
E[Y |S2, S1, A1 = d1(1), A2 = d2{S2, 1, d1(1)}]

∣∣∣S1 = 1, A1 = d1(1)
)

pr(S1 = 1). Under the

generative model, writing a1 = I(ψ10 + ψ11s1 > 0) for brevity, these expectations are of the

form E
(
E[Y |S2, S1, A1 = d1(s1), A2 = d2{S2, s1, d1(s1)}]

∣∣∣S1 = s1, A1 = d1(s1)
)

= β20 + β0
21s1 +

β0
22a1 + β0

23s1a1 + β0
24E{(S2|S1 = s1, A1 = d1(s1)} + β0

25E{S2
2 |S1 = s1, A1 = d1(s1)} + (ψ0

20 +

ψ0
21a1)E{I(ψ20 + ψ21a1 + ψ22S2 > 0)|S1 = s1, A1 = d1(s1)} + ψ0

22E{S2I(ψ20 + ψ21a1 + ψ22S2 >

0)|S1 = s1, A1 = d1(s1)}, for s1 = 0, 1. In the generative data model, the conditional distribution

of S2 given S1, A1 is normal; accordingly, it is straightforward to calculate E{S2|S1 = s1, A1 =

d1(s1)}, E{S2
2 |S1 = s1, A1 = d1(s1)}, E{I(ψ20 + ψ21a1 + ψ22S2 > 0)|S1 = s1, A1 = d1(s1)}, and

E{S2I(ψ20 + ψ21a1 + ψ22S2 > 0)|S1 = s1, A1 = d1(s1)} in a manner analogous to those for the

case K = 1. Approximation of E{H(d̂opt)} and hence R(d̂opt) for d̂opt = d̂opt
Q or d̂opt

A may then be

carried out as for the case K = 1.
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Calculation by simulation. When an analytical expression for H(d) = E{Y ∗(d)} for regimes of

a certain form d is not available, H(d) for a fixed d may be approximated by simulation using

the g-computation algorithm of Robins (1986). We demonstrate for K = 2, so that d = (d1, d2);

the procedure for K = 1 is then immediate. For total number of simulations B, for each b =

1, . . . , B, the steps are: (i) Generate s1b from the true distribution of S1; (ii) generate s2b from

the true conditional distribution of S2 given S1 = s1b and A1 = d1(s1b); (iii) evaluate the true

E(Y |S̄2 = s̄2, Ā2 = ā2) at s̄2 = s̄2b = (s1b, s2b) and ā2 = [d1(s1b), d2{s̄2b, d1(s1b)}], and call the

resulting value Ub; and (iv) estimate H(d) = E{Y ∗(d)} by B−1∑B
b=1 Ub. When d = d̂opt

Q or d̂opt
A ,

one would follow the above procedure for each Monte Carlo data set. In each of steps (i)–(iii),

it is important to recognize that, while d̂opt
Q and d̂opt

A are determined by the estimated ψ, the

distributions from which realizations are generated depend on the true β and ψ. The values of

E{H(d̂opt
Q )} and E{H(d̂opt

A )} may then be approximated by the average of the estimated H(d̂opt
Q )

and H(d̂opt
Q ) across the Monte Carlo data sets, as before.

A.7. CREATING “EQUIVALENTLY MISSPECIFIED PAIRS” WHEN BOTH THE

PROPENSITY MODEL AND Q-FUNCTION ARE MISSPECIFIED

Consider the K = 2 decision point scenario; the developments apply equally to the K = 1 set-

ting. To identify pairs (β0
25, φ

0
25) that are “equivalently misspecified,” for each of the combinations

of β0
25 and φ0

25 within a pre-specified grid, say (β0
25, φ

0
25) ∈ [−1, 1]× [−1, 1] with a step size of 0.05,

we generate a large data set of size n = 10, 000 from the generative data model in Section 6.2

with all other parameters fixed at their true values. This yields 41 × 41 = 1681 combinations

and hence such data sets. For each data set, the linear regression model for the response and the

logistic model for propensity of treatment assignment are then fitted, and the ratio of standard

errors for φ̂25 and β̂25, SE(φ̂25)/SE(β̂25), say, obtained. We then fit to these values a polynomial

model in φ0
25, f(φ0

25), say, and select the polynomial degree yielding a sufficiently large adjusted

R2. Setting β0
25 = φ0

25/f(φ0
25) then yields the result that the corresponding t-statistics will be

approximately equal. These were re-checked in the course of running the simulations so that the

t-statistics differed by less than some reasonable value, usually at most a 5 percent difference, as

it cannot be guaranteed that they will be precisely the same.

imsart-sts ver. 2011/12/01 file: suppmat.tex date: August 19, 2013



10 P.J. SCHULTE ET AL.

A.8. DERIVATION OF H0
1(S1;β

0
1) AND C0

1(S1;ψ
0
1) IN THE TWO DECISION POINT

SCENARIO

We seek to identify the true h0
1(s1) and C0

1 (s1), where S1 and A1 are Bernoulli. With h0
1(s1) =

β0
10 + β0

11s1 and C0
1 (s1) = ψ0

10 + ψ0
11s1, it follows that the true Q-function at the first decision

is Q0
1(s1, a1) = h0

1(s1) + a1C
0
1 (s1). We thus calculate Q0

1(s1, a1) under the generative model and

equate terms to determine the form of β0
10, β0

11, ψ0
10, and ψ0

11. The true value function at the

second decision is V 0
2 (S1, S2, A1) = h0

2(S1, S2, A1) + C0
2 (S1, S2, A1)I{C0

2 (S1, S2, A1) > 0}. Thus,

Q0
1(s1, a1) = E{V 0

2 (S1, S2, A1)|S1 = s1, A1 = a1} = β0
20 + β0

21s1 + β0
22a1 + β0

23s1a1 + β0
24E{S2|S1 =

s1, A1 = a1}+ β0
25E{S2

2 |S1 = s1, A1 = a1}+ E{C0
2 (S1, S2, A1)I{C0

2 (S1, S2, A1) > 0)|S1 = s1, A1 =

a1}. The conditional expectations in this expression may be calculated in a manner analogous to

that in Section A.5 to obtain the form of Q0
1(s1, a1). It follows that Q0

1(0, 0) = β0
10, Q0

1(1, 0) =

β0
10 + β0

11, Q0
1(0, 1) = β0

10 + ψ0
10, and Q0

1(1, 1) = β0
10 + β0

11 + ψ0
10 + ψ0

11, which may be solved to

yield expressions for β0
10, β0

11, ψ0
10, and ψ0

11.

A.9. ADDITIONAL SIMULATION RESULTS

In this section, we present additional summaries of results of the simulations reported in Sec-

tions 6.1 and 6.2.

The quantities R(d̂opt
Q ) and R(d̂opt

A ) plotted in Figures 1–6 are the v-efficiencies of the estimated

regimes produced by each method, as discussed at the beginning of Section 6 of the parent article.

These are based on the averages E{H(d̂opt
Q )} and E{H(d̂opt

A )}. Because the distributions of the

H(d̂opt
Q ) and H(d̂opt

A ) may be left-skewed, it is instructive to also present both the distributions

themselves and alternatives to R(d̂opt
Q ) and R(d̂opt

A ) based on the median.

The left-hand panel of Figure A.1 is the same as the right-most panel of Figure 1 in the main

paper shown for convenience. For comparison, the right-hand panel shows both these distributions

and the alternative measures of estimated regime efficiency based on medians rather than averages.

Figures A.2 and A.3 show the same corresponding to Figures 2 and 3 in the main paper.

Likewise, Figures A.4–A.6 show the same information corresponding to the lower right-hand

panels of Figures 4–6 in the main article.

In nearly all cases, the plots using the median dominate those using the mean, reflecting the

expected skewness.
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Fig A.1. One decision point, misspecified propensity model. Left panel is same as the right-most panel of Figure 1
of the main article. Right panel shows alternative measure of efficiency based on medians and their distributions.
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Fig A.2. One decision point, misspecified Q-function. Left panel is same as the right-most panel of Figure 2 of the
main article. Right panel shows alternative measure of efficiency based on medians and their distributions.
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Fig A.3. One decision point, both models misspecified. Left panel is same as the right-most panel of Figure 3 of the
main article. Right panel shows alternative measure of efficiency based on medians and their distributions.
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distributions.
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Fig A.5. Two decision points, misspecified Q-function. Left panel is same as the lower right-most panel of Figure
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Fig A.6. Two decision points, both models misspecified. Left panel is same as the right-most panel of Figure 6 of
the main article. Right panel shows alternative measure of efficiency based on medians and their distributions.
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For each level of misspecification in the misspecified propensity score scenario for one decision,

Figure A.7 plots the average across all simulated data sets of the standard deviations of the

estimated propensity scores for each simulated data set. The figure shows that as the level of

misspecification increases, the standard deviation decreases, as consistent with the claim in the

main article.

The bottom panels of Figure A.7 show similar results for the two decision point misspecified

propensity scenario. For the second decision point, shown in the bottom right panel of Figure A.7,

where the propensity model is misspecified, the behavior is similar (standard deviation decreases

as level of misspecification increases). For comparison, the bottom left panel of Figure A.7 shows

the behavior of the estimated propensities at the first decision point, where the propensity model

is correctly specified; as expected, there is no discernible pattern.

We also carried out simulations under the case of misspecified contrast function in a scenario

similar to that in Section 6.1. Here, we used the class of generative models defined in (34) with

the exception that

Y |S1 = s1, A1 = a1 ∼ Normal{β0
10 + β0

11s1 + β0
12s

2
1 + a1(ψ0

10 + ψ0
11s1 + ψ0

12s
2
1), 9},

so that ψ0 = (ψ0
10, ψ

0
11, ψ

0
12)T , and thus dopt = dopt

1 , dopt
1 (s1) = I(ψ0

10 + ψ0
11s1 + ψ0

12s
2
1 > 0).

For A-learning, we assumed models h1(s1;β1) = β10 + β11s1, C1(s1;ψ1) = ψ10 + ψ11s1, and

π1(s1;φ1) = expit(φ10 +φ11s1), and for Q-learning used Q1(s1, a1; ξ1) = h1(s1;β1) +a1C1(s1;ψ1).

To simplify notation and distinguish between different components of the Q-function, we refer to

h1(s1;β1) as the h-function.

These models involve correctly specified contrast functions only when ψ0
12 = 0. The h-function

is correctly specified when β0
12 = 0, and the propensity model, π1(s1;φ1), is correctly specified

when φ0
12 = 0. We studied the effects of misspecification of the contrast function by systematically

varying β0
12, φ0

12, and ψ0
12 while keeping the others fixed, considering parameter settings of the

form φ0 = (0,−2, φ0
12)T , β0 = (1, 1, β0

12)T , and ψ0 = (1, 0.5, ψ0
12)T .

Three scenarios were considered:

1. misspecified contrast function alone (β0
12 = φ0

12 = 0, and nonzero ψ0
12)

2. misspecified contrast and h-function (φ0
12 = 0, and nonzero β0

12 and ψ0
12)

3. misspecified contrast and propensity model (β0
12 = 0, and nonzero φ0

12 and ψ0
12).
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Fig A.7. Misspecified propensity model. Each symbol represents the average across all simulated data sets of the
standard deviation of the estimated propensity scores for each data set. Top: one decision point. Lower left: two
decision points; first stage. Lower right: two decision points; second stage.
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Under scenarios 2 and 3, we identified β0
12 = β0

12(ψ0
12) and ψ0

12 = ψ0
12(φ0

12), respectively, using the

approach outlined in Section A.7, so that an analyst might be equally likely to detect either form of

misspecification. Further, we observe that in the second and third scenarios, sgn(β0
12) = sgn(ψ0

12)

and sgn(φ0
12) = sgn(ψ0

12), respectively, where sgn(x) = I(x > 0).

Figure A.8 presents the v-efficiencies of estimators for dopt under Q- and A-learning for each

scenario. Here, the true dopt is an indicator for whether the quadratic function ψ0
10 +ψ0

11s1 +ψ0
12s

2
1

is positive. For the given parameterization, when ψ0
12 > 0 the true dopt

1 (s1) = 1 for all s1. However,

estimators for dopt under Q- and A-learning assume a linear contrast function such that d̂opt
Q (s1) =

0 or d̂opt
A (s1) = 0 for some s1. This is illustrated in all three panels by R(d̂opt

Q ) < 1 and R(d̂opt
A ) < 1.

The top panel of Figure A.8 indicates that, when only the contrast function is misspecified (sce-

nario 1) and when ψ0
12 ≤ 0, a small gain in v-efficiency is achieved by d̂opt

Q over d̂opt
A . Alternatively,

for ψ0
12 > 0, d̂opt

A yields slightly better performance as ψ0
12 increases.

For the second scenario, we considered misspecification of the contrast and h-function. The

results are shown in the bottom left panel of Figure A.8. Similar to the prior scenario, we observe

small gains in v-efficiency for d̂opt
Q over d̂opt

A when ψ0
12 ≤ 0 (and β0

12 = β0
12(ψ0

12) ≤ 0) and superior

performance under A-learning for some values of ψ0
12 > 0. Finally, the bottom right panel shows

the results for the scenario of both misspecified contrast and misspecified propensity (scenario 3).

Both Q- and A-learning yield estimators for dopt that exhibit poor v-efficiency for much of the

range where φ0
12 < 0 (and ψ0

12 < 0), while d̂opt
Q shows better v-efficiency relative to d̂opt

A when

φ0
12 > 0 (and ψ0

12 > 0).

These results demonstrate that neither method need dominate the other in terms of performance

as reflected by v-efficiency when the contrast function is misspecified.

A.10. DESIGN OF STAR*D

Figure A.9 presents a schematic of the STAR*D study design. At levels 2 and 3, patients/physicians

expressed preference for switch or augment, and were then randomized to the options shown. Pa-

tients entering level 2A were randomized; those entering level 4 were not.

A.11. EXPLORATORY ANALYSIS AND DIAGNOSTICS

The development of the posited Q-functions used in the analysis of STAR*D data in Section 7

of the main paper relied on input from the investigators. The information included in S1 and the
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Fig A.8. V-efficiencies R(d̂
opt
Q ) and R(d̂

opt
A ) for estimating the true dopt (right panel) under misspecification of

the contrast model, one decision point. Top: misspecified contrast function only. Lower left: misspecified contrast
function and misspecified h-function. Lower right: misspecified contrast function and misspecified propensity model.
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Level 1 Initial treatment: CIT

Level 2 “Switch” treatments: BUP, CT, SER, or VEN
“Augment” treatments:  CIT + (BUP, BUS, or CT)

Level 2a If received CT in Level 2: BUP or VEN

Level 3 “Switch” treatments: MIRT or NTP
“Augment” treatments:  previous treatment + (Li or THY)

Level 4 Switch to TCP or MIRT + VEN

Follow-up

Fig A.9. Schematic depiction of the STAR*D study.

dependence of the models on QIDS slope was guided by discussions with John Rush, the principal

investigator.

We present diagnostic plots for the first and second stage regressions used in the STAR*D

analysis. Figure A.10 displays standard regression diagnostics for the second stage regression

models used in Q- and A-learning. The figure suggests that there are no major deviations from the

assumed linear model and that there is no evidence of outliers or high-influence points. Figure A.11

displays regression diagnostics for the first stage regression models used in Q- and A-learning. The

figure suggests that a linear model may be a satisfactory approximation, though it appears that

the linear model overestimates the first stage Q-function for non-responders and underestimates

the first stage Q-function for responders. Recall that, by design, responders have higher responses

at the end of the first stage. Thus, responders tend to have higher fitted values and positive

residuals. There do not appear to be any outliers or high-influence points.
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Fig A.10. Regression diagnostics for the second stage Q-function used in Q- and A-learning. Upper left: displays
residuals vs. fitted values; the figure does not suggest deviation from an underlying linear model with homoscedastic
variance, and there do not appear to be any outliers. Upper right: displays the studentized residuals vs. the fitted
values; the plot does not suggest deviation form an underlying linear model with homoscedastic variance, and there
do not appear to be any outliers. Lower left: displays a QQ-plot of the residuals; note that the sample quantiles
are a step-function because we have treated the discrete variable QIDS as continuous. Lower right: displays the
studentized residuals vs. leverage; there do not appear to be any high-influence points.
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Fig A.11. Regression diagnostics for the first stage Q-function used in Q- and A-learning. Responders are depicted
with a 4 and non-responders with a ◦. Upper left: displays residuals vs. fitted values; there is a clear distinction
between the responders and non-responders. Responders, by design, have higher first stage responses and thus tend
to have higher fitted values and positive residuals. Upper right: displays the studentized residuals vs. the fitted
values; again, the separation between responders and non-responders is clear. Lower left: displays a QQ-plot of the
residuals; note that the sample quantiles are a step-function because we have treated the discrete variable QIDS as
continuous. Lower right: displays the studentized residuals vs. leverage; there do not appear to be any high-influence
points.
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