Additional File 1: Calculation of expected SNP frequencies in out- and back-crosses.

Graham J Etherington^{1,2†}, Jacqueline Monaghan^{1†}, Cyril Zipfel¹ and Dan MacLean^{1*}

*Correspondence: dan.maclean@tsl.ac.uk ¹The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, UK Full list of author information is available at the end of the article †Equal contributor

SNP frequency in different crosses

Methods such as SHOREMap [1] and NGM [2] rely on the relative density of SNPs of one type to SNPs of another type to work (usually the number of homozygous SNPs relative to heterozygous SNPs). As a second ecotype is involved in an out-cross then you get many thousands of SNPs introduced. We can define some terms

- S_{ler} the number of SNPs between the reference sequence and another ecotype (e.g Ler)
- S_{ref} the number of SNPs between the reference sequence (i.e Col-0) and the bulked mutants (i.e *bak1-5 mob1* and *bak1-5 mob2*).
- S_{parent} the number of SNPs present in the parent (i.e in *bak1-5*)
- S_{mut} the number of SNPs present in the mutant

The formula for the number of SNPs in an out-cross is

$$S_{\rm ref} \cup S_{\rm parent} \cup S_{\rm ler}$$
 (1)

(where the symbol \cup is the symbol that defines the 'union' operation, the joining of two sets with removal of overlaps). So this formula represents the non-redundant, summed set of the SNPs in each component of the background. Looking at the relative magnitudes of the numbers in each of those subsets of SNPs

- S_{ref} is on the order of 1200 [3]
- S_{parent} is on the order of 500 [4]
- $S_{\rm mut}$ is on the order of 500 for the same reasons as above
- S_{ler} is on the order of 150,000 [1, 3]

So in the Arabidopsis genome we would expect 1 SNP every 900 nt in a out-crossed experiment with another ecotype and 1 SNP every 65,000 nt in the back-cross.

We see then that any cross with another ecotype is going to be more amenable to statistical methods. The number of SNPs from a backcross is not amenable to frequentist approaches over an entire genome.

Author details

 $^1{\rm The}$ Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, UK. $^2{\rm The}$ Genome Analysis Centre Norwich Research Park, NR4 7UH, Norwich, UK.

References

- Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A.H., Nielsen, K.L., Jørgensen, J.-E., Weigel, D., Andersen, S.U.: SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature methods 6(8), 550–551 (2009)
- Austin, R.S., Vidaurre, D., Stamatiou, G., Breit, R., Provart, N.J., Bonetta, D., Zhang, J., Fung, P., Gong, Y., Wang, P.W., McCourt, P., Guttman, D.S.: Next-generation mapping of Arabidopsis genes. The Plant journal : for cell and molecular biology 67(4), 715–725 (2011)
- 3. Ossowski, S., Schneeberger, K., Clark, R.M., Lanz, C., Warthmann, N., Weigel, D.: Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome research **18**(12), 2024–2033 (2008)
- Weigel, D., Glazebrook, J.: EMS Mutagenesis of Arabidopsis Seed. Audio and Electroacoustics Newsletter, IEEE 2006(5), (2006)